NiO nanoparticles with plate structure grown on graphene as fast charge-discharge anode material for lithium ion batteries

被引:85
作者
Hwang, Seung-Gi [1 ]
Kim, Gyeong-Ok [1 ]
Yun, Su-Ryeon [1 ]
Ryu, Kwang-Sun [1 ]
机构
[1] Univ Ulsan, Dept Chem, Ulsan 680749, South Korea
关键词
Graphene; NiO; Anode; Lithium ion batteries; STORAGE; LI; PERFORMANCE; INSERTION; CAPACITY; OXIDE; NANOSTRUCTURES; NANOCOMPOSITE; ELECTRODES; PHASE;
D O I
10.1016/j.electacta.2012.06.031
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A graphene/NiO composite was prepared by simple chemical precipitation followed by thermal annealing. The results of XRD, FT-IR, FE-SEM, FE-TEM, and EDS analyses confirmed the presence of NiO nanoparticles with plate structure on the graphene surface. The discharge capacities of graphene, graphene/NiO (37 wt.%), and graphene/NiO (59 wt.%) are about 302, 604, and 856 mAh g(-1) at 5000 mA g(-1) (5 C), respectively. The cells containing 59 wt.% NiO show the best performance, and the graphene nanocomposite materials have high rate properties that are comparable to some of the best results reported in the literature using NiO. This graphene/NiO (37 and 59 wt.%) nanocomposite displays superior LIB performance with large reversible capacity, high Coulombic efficiency, good cyclic performance, and excellent rate capability, highlighting the importance of the anchoring of nanoplate structure NiO on graphene sheets for maximum utilization of electrochemically active graphene/NiO for energy storage applications in high-performance LIB. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:406 / 411
页数:6
相关论文
共 36 条
[1]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[2]   High rate capability of graphite negative electrodes for lithium-ion batteries [J].
Buqa, H ;
Goers, D ;
Holzapfel, M ;
Spahr, ME ;
Novák, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (02) :A474-A481
[3]   Enhanced reversible lithium storage in a nanosize silicon/graphene composite [J].
Chou, Shu-Lei ;
Wang, Jia-Zhao ;
Choucair, Mohammad ;
Liu, Hua-Kun ;
Stride, John A. ;
Dou, Shi-Xue .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (02) :303-306
[4]   MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS [J].
DAHN, JR ;
ZHENG, T ;
LIU, YH ;
XUE, JS .
SCIENCE, 1995, 270 (5236) :590-593
[5]   Bipolar supercurrent in graphene [J].
Heersche, Hubert B. ;
Jarillo-Herrero, Pablo ;
Oostinga, Jeroen B. ;
Vandersypen, Lieven M. K. ;
Morpurgo, Alberto F. .
NATURE, 2007, 446 (7131) :56-59
[6]   Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries [J].
Hu, Yong-Sheng ;
Demir-Cakan, Rezan ;
Titirici, Maria-Magdalena ;
Mueller, Jens-Oliver ;
Schloegl, Robert ;
Antonietti, Markus ;
Maier, Joachim .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (09) :1645-1649
[7]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339
[8]   Behavior of NiO-MnO2/MWCNT composites for use in a supercapacitor [J].
Hwang, Seung-Gi ;
Ryu, Seong-Hyeon ;
Yun, Su-Ryeon ;
Ko, Jang Myoun ;
Kim, Kwang Man ;
Ryu, Kwang-Sun .
MATERIALS CHEMISTRY AND PHYSICS, 2011, 130 (1-2) :507-512
[9]   Tin-based amorphous oxide: A high-capacity lithium-ion-storage material [J].
Idota, Y ;
Kubota, T ;
Matsufuji, A ;
Maekawa, Y ;
Miyasaka, T .
SCIENCE, 1997, 276 (5317) :1395-1397
[10]   Optimum conditions to prepare high yield, phase pure α-Ni(OH)2 nanoparticles by urea hydrolysis and electrochemical ageing in alkali solutions [J].
Jayalakshmi, M ;
Venugopal, N ;
Reddy, BR ;
Rao, MM .
JOURNAL OF POWER SOURCES, 2005, 150 :272-275