Empirical minimization

被引:108
作者
Bartlett, PL
Mendelson, S
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
[3] Australian Natl Univ, Ctr Math & Applicat, Canberra, ACT 0200, Australia
关键词
empirical processes; error bounds; isomorphic coordinate projections; empirical minimization;
D O I
10.1007/s00440-005-0462-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the behavior of the empirical minimization algorithm using various methods. We first analyze it by comparing the empirical, random, structure and the original one on the class, either in an additive sense, via the uniform law of large numbers, or in a multiplicative sense, using isomorphic coordinate projections. We then show that a direct analysis of the empirical minimization algorithm yields a significantly better bound, and that the estimates we obtain are essentially sharp. The method of proof we use is based on Talagrand's concentration inequality for empirical processes.
引用
收藏
页码:311 / 334
页数:24
相关论文
共 30 条
[1]  
[Anonymous], 2001, HDB GEOMETRY BANACH
[2]   Local Rademacher complexities [J].
Bartlett, PL ;
Bousquet, O ;
Mendelson, S .
ANNALS OF STATISTICS, 2005, 33 (04) :1497-1537
[3]   Model selection and error estimation [J].
Bartlett, PL ;
Boucheron, S ;
Lugosi, G .
MACHINE LEARNING, 2002, 48 (1-3) :85-113
[4]  
BARTLETT PL, 2005, IN PRESS J AM STAT A
[5]   LEARNABILITY AND THE VAPNIK-CHERVONENKIS DIMENSION [J].
BLUMER, A ;
EHRENFEUCHT, A ;
HAUSSLER, D ;
WARMUTH, MK .
JOURNAL OF THE ACM, 1989, 36 (04) :929-965
[6]  
BOUSQUET O, 2002, THESIS DEPT APPL MAT
[7]  
DUDLEY RM, 1999, UNIFROM CENTRAL LIMI
[8]  
Giné E, 2003, PROG PROBAB, V56, P249
[9]   SPHERE PACKING NUMBERS FOR SUBSETS OF THE BOOLEAN N-CUBE WITH BOUNDED VAPNIK-CHERVONENKIS DIMENSION [J].
HAUSSLER, D .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1995, 69 (02) :217-232
[10]   Left concentration inequalities for empirical processes [J].
Klein, T .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (06) :501-504