Growth of graphene on Ir(111)

被引:355
作者
Coraux, Johann [1 ]
N'Diaye, Alpha T. [1 ]
Engler, Martin [1 ]
Busse, Carsten [1 ]
Wall, Dirk [2 ]
Buckanie, Niemma [2 ]
Heringdorf, Frank-j Meyer Zu [2 ]
van Gastel, Raoul [3 ]
Poelsema, Bene [3 ]
Michely, Thomas [1 ]
机构
[1] Univ Cologne, Inst Phys 2, D-50937 Cologne, Germany
[2] Univ Duisburg Essen, Inst Expt Phys, D-47057 Duisburg, Germany
[3] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
来源
NEW JOURNAL OF PHYSICS | 2009年 / 11卷
关键词
EPITAXIAL GRAPHENE; CARBON NANOTUBES; GRAPHITE; SURFACES; IRIDIUM; PT(111); ETHYLENE; STM; ADSORPTION; RUTHENIUM;
D O I
10.1088/1367-2630/11/2/023006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Catalytic decomposition of hydrocarbons on transition metals attracts a renewed interest as a route toward high-quality graphene prepared in a reproducible manner. Here we employ two growth methods for graphene on Ir(111), namely room temperature adsorption and thermal decomposition at 870-1470K (temperature programmed growth (TPG)) as well as direct exposure of the hot substrate at 870-1320K (chemical vapor deposition (CVD)). The temperature- and exposure-dependent growth of graphene is investigated in detail by scanning tunneling microscopy. TPG is found to yield compact graphene islands bounded by C zigzag edges. The island size may be tuned from a few to a couple of tens of nanometers through Smoluchowski ripening. In the CVD growth, the carbon in ethene molecules arriving on the Ir surface is found to convert with probability near unity to graphene. The temperature-dependent nucleation, interaction with steps and coalescence of graphene islands are analyzed and a consistent model for CVD growth is developed.
引用
收藏
页数:22
相关论文
共 59 条
  • [1] Understanding the nucleation mechanisms of carbon nanotubes in catalytic chemical vapor deposition
    Amara, H.
    Bichara, C.
    Ducastelle, F.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (05)
  • [2] Formation of carbon nanostructures on nickel surfaces: A tight-binding grand canonical Monte Carlo study
    Amara, H
    Bichara, C
    Ducastelle, F
    [J]. PHYSICAL REVIEW B, 2006, 73 (11):
  • [3] SOLUBILITY OF CARBON IN RHODIUM RUTHENIUM, IRIDIUM AND RHENIUM
    ARNOULT, WJ
    MCLELLAN, RB
    [J]. SCRIPTA METALLURGICA, 1972, 6 (10): : 1013 - &
  • [4] Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics
    Berger, C
    Song, ZM
    Li, TB
    Li, XB
    Ogbazghi, AY
    Feng, R
    Dai, ZT
    Marchenkov, AN
    Conrad, EH
    First, PN
    de Heer, WA
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) : 19912 - 19916
  • [5] Electronic confinement and coherence in patterned epitaxial graphene
    Berger, Claire
    Song, Zhimin
    Li, Xuebin
    Wu, Xiaosong
    Brown, Nate
    Naud, Cecile
    Mayou, Didier
    Li, Tianbo
    Hass, Joanna
    Marchenkov, Atexei N.
    Conrad, Edward H.
    First, Phillip N.
    de Heer, Wait A.
    [J]. SCIENCE, 2006, 312 (5777) : 1191 - 1196
  • [6] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [7] Structural coherency of graphene on Ir(111)
    Coraux, Johann
    N'Diaye, Alpha T.
    Busse, Carsten
    Michely, Thomas
    [J]. NANO LETTERS, 2008, 8 (02) : 565 - 570
  • [8] Intercalation of copper underneath a monolayer of graphite on Ni(111)
    Dedkov, YS
    Shikin, AM
    Adamchuk, VK
    Molodtsov, SL
    Laubschat, C
    Bauer, A
    Kaindl, G
    [J]. PHYSICAL REVIEW B, 2001, 64 (03):
  • [9] Rashba effect in the graphene/Ni(111) system
    Dedkov, Yu. S.
    Fonin, M.
    Ruediger, U.
    Laubschat, C.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (10)
  • [10] A possible source of spin-polarized electrons: The inert graphene/Ni(111) system
    Dedkov, Yu. S.
    Fonin, M.
    Laubschat, C.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (05)