The electronic properties of graphene

被引:20867
作者
Castro Neto, A. H. [1 ]
Guinea, F. [2 ]
Peres, N. M. R. [3 ]
Novoselov, K. S. [4 ]
Geim, A. K. [4 ]
机构
[1] Boston Univ, Dept Phys, Boston, MA 02215 USA
[2] CSIC, Inst Ciencia Mat, E-28049 Madrid, Spain
[3] Univ Minho, Ctr Phys, P-4710057 Braga, Portugal
[4] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
carbon; electron-phonon interactions; nanostructured materials; quantum Hall effect; surface states; tight-binding calculations; tunnelling; SCANNING-TUNNELING-MICROSCOPY; DISORDERED DEGENERATE SEMICONDUCTORS; SELF-CONSISTENT THEORY; SPIN-ORBIT INTERACTION; DIRAC-FERMIONS; QUANTUM TRANSPORT; MAGNETIC-FIELDS; BAND-STRUCTURE; LANDAU-LEVELS; SYMMETRY-BREAKING;
D O I
10.1103/RevModPhys.81.109
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.
引用
收藏
页码:109 / 162
页数:54
相关论文
共 440 条
  • [1] Quantized transport in graphene p-n junctions in a magnetic field
    Abanin, D. A.
    Levitov, L. S.
    [J]. SCIENCE, 2007, 317 (5838) : 641 - 643
  • [2] Spin-filtered edge states and quantum hall effect in graphene
    Abanin, DA
    Lee, PA
    Levitov, LS
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (17)
  • [3] Charge and spin transport at the quantum Hall edge of graphene
    Abanin, Dmitry A.
    Lee, Patrick A.
    Levitov, Leonid S.
    [J]. SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) : 77 - 85
  • [4] Dissipative quantum Hall effect in graphene near the Dirac point
    Abanin, Dmitry A.
    Novoselov, Kostya S.
    Zeitler, Uli
    Lee, Patrick A.
    Geim, A. K.
    Levitov, L. S.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (19)
  • [5] Visibility of graphene flakes on a dielectric substrate
    Abergel, D. S. L.
    Russell, A.
    Fal'ko, Vladimir I.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (06)
  • [6] Quantum magnetoresistance
    Abrikosov, AA
    [J]. PHYSICAL REVIEW B, 1998, 58 (05): : 2788 - 2794
  • [7] A self-consistent theory for graphene transport
    Adam, Shaffique
    Hwang, E. H.
    Galitski, V. M.
    Das Sarma, S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) : 18392 - 18397
  • [8] ADEBPOUR N, 2007, PHYS REV B, V76, DOI DOI 10.1103/PHYSREVB.76.195407
  • [9] Non-Hermitian Luttinger liquids and flux line pinning in planar superconductors -: art. no. P10003
    Affleck, I
    Hofstetter, W
    Nelson, DR
    Shollwöck, U
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
  • [10] Experimental evidence of a single nano-graphene
    Affoune, AM
    Prasad, BLV
    Sato, H
    Enoki, T
    Kaburagi, Y
    Hishiyama, Y
    [J]. CHEMICAL PHYSICS LETTERS, 2001, 348 (1-2) : 17 - 20