Regulatory modules controlling maize inflorescence architecture

被引:122
作者
Eveland, Andrea L. [1 ]
Goldshmidt, Alexander [1 ]
Pautler, Michael [1 ]
Morohashi, Kengo [2 ]
Liseron-Monfils, Christophe [1 ]
Lewis, Michael W. [3 ]
Kumari, Sunita [1 ]
Hiraga, Susumu [1 ,4 ]
Yang, Fang [1 ]
Unger-Wallace, Erica [5 ]
Olson, Andrew [1 ]
Hake, Sarah [3 ]
Vollbrecht, Erik [5 ]
Grotewold, Erich [2 ]
Ware, Doreen [1 ,6 ]
Jackson, David [1 ]
机构
[1] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
[2] Ohio State Univ, CAPS, Dept Mol Genet, Columbus, OH 43210 USA
[3] Univ Calif Berkeley, Plant & Microbial Biol Dept, USDA ARS, Ctr Plant Gene Express, Berkeley, CA 94720 USA
[4] Natl Food & Agr Res Org, NARO Inst Crop Sci, Tsukuba, Ibaraki 3058518, Japan
[5] Iowa State Univ, Dept Genet Dev & Cell Biol, Ames, IA 50011 USA
[6] Cornell Univ, Robert W Holley Ctr Agr & Hlth, NAA, USDA ARS, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
ZINC-FINGER PROTEIN; FLOWERING TIME REGULATOR; TRANSCRIPTION FACTOR; MERISTEM IDENTITY; DOMAIN PROTEIN; LEUCINE-ZIPPER; ARABIDOPSIS; GENE; ENCODES; EVOLUTION;
D O I
10.1101/gr.166397.113
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genetic control of branching is a primary determinant of yield, regulating seed number and harvesting ability, yet little is known about the molecular networks that shape grain-bearing inflorescences of cereal crops. Here, we used the maize (Zea mays) inflorescence to investigate gene networks that modulate determinacy, specifically the decision to allow branch growth. We characterized developmental transitions by associating spatiotemporal expression profiles with morphological changes resulting from genetic perturbations that disrupt steps in a pathway controlling branching. Developmental dynamics of genes targeted in vivo by the transcription factor RAMOSA1, a key regulator of determinacy, revealed potential mechanisms for repressing branches in distinct stem cell populations, including interactions with KNOTTED1, a master regulator of stem cell maintenance. Our results uncover discrete developmental modules that function in determining grass-specific morphology and provide a basis for targeted crop improvement and translation to other cereal crops with comparable inflorescence architectures.
引用
收藏
页码:431 / 443
页数:13
相关论文
共 70 条
[41]  
Nelissen H, 2012, CURR BIOL, V22, P1183, DOI 10.1016/j.cub.2012.04.065
[42]  
Nickerson N. H., 1960, Ann. Mo. Bot. Gdn., V47, P243, DOI 10.2307/2394736
[43]   The solution structure of a specific GAGA factor-DNA complex reveals a modular binding mode [J].
Omichinski, JG ;
Pedone, PV ;
Felsenfeld, G ;
Gronenborn, AM ;
Clore, GM .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (02) :122-132
[44]   Rate of meristem maturation determines inflorescence architecture in tomato [J].
Park, Soon Ju ;
Jiang, Ke ;
Schatz, Michael C. ;
Lippman, Zachary B. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (02) :639-644
[45]   LATE MERISTEM IDENTITY2 acts together with LEAFY to activate APETALA1 [J].
Pastore, Jennifer J. ;
Limpuangthip, Andrea ;
Yamaguchi, Nobutoshi ;
Wu, Miin-Feng ;
Sang, Yi ;
Han, Soon-Ki ;
Malaspina, Lauren ;
Chavdaroff, Natasha ;
Yamaguchi, Ayako ;
Wagner, Doris .
DEVELOPMENT, 2011, 138 (15) :3189-3198
[46]   Establishing a Framework for the Ad/Abaxial Regulatory Network of Arabidopsis: Ascertaining Targets of Class III HOMEODOMAIN LEUCINE ZIPPER and KANADI Regulation [J].
Reinhart, Brenda J. ;
Liu, Tie ;
Newell, Nicole R. ;
Magnani, Enrico ;
Huang, Tengbo ;
Kerstetter, Randall ;
Michaels, Scott ;
Barton, M. Kathryn .
PLANT CELL, 2013, 25 (09) :3228-3249
[47]   A trehalose metabolic enzyme controls inflorescence architecture in maize [J].
Satoh-Nagasawa, N ;
Nagasawa, N ;
Malcomber, S ;
Sakai, H ;
Jackson, D .
NATURE, 2006, 441 (7090) :227-230
[48]   Statistical significance of cis-regulatory modules [J].
Schones, Dustin E. ;
Smith, Andrew D. ;
Zhang, Michael Q. .
BMC BIOINFORMATICS, 2007, 8 (1)
[49]   Evidence of selection at the ramosa1 locus during maize domestication [J].
Sigmon, Brandi ;
Vollbrecht, Erik .
MOLECULAR ECOLOGY, 2010, 19 (07) :1296-1311
[50]   Using evolution as a guide to engineer kranz-type C4 photosynthesis [J].
Slewinski, Thomas L. .
FRONTIERS IN PLANT SCIENCE, 2013, 4