Linking genes to diseases: it's all in the data

被引:40
作者
Tiffin, Nicki [1 ]
Andrade-Navarro, Miguel A. [2 ]
Perez-Iratxeta, Carolina [3 ]
机构
[1] Univ Western Cape, S African Natl Bioinformat Inst, MRC UWC SANBI Bioinformat Capac Dev Unit, ZA-7535 Bellville, South Africa
[2] Max Delbruck Ctr Mol Med, D-13125 Berlin, Germany
[3] Ottawa Hosp Res Inst, Ottawa, ON K1H 8L6, Canada
来源
GENOME MEDICINE | 2009年 / 1卷
基金
英国医学研究理事会;
关键词
GENOME-WIDE IDENTIFICATION; PHENOTYPE ONTOLOGY; PROTEIN COMPLEXES; CANDIDATE GENES; PRIORITIZATION; TOOL; ASSOCIATION; UPDATE; MOUSE; EXPRESSION;
D O I
10.1186/gm77
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genome-wide association analyses on large patient cohorts are generating large sets of candidate disease genes. This is coupled with the availability of ever-increasing genomic data bases and a rapidly expanding repository of biomedical literature. Computational approaches to disease-gene association attempt to harness these data sources to identify the most likely disease gene candidates for further empirical analysis by translational researchers, resulting in efficient identification of genes of diagnostic, prognostic and therapeutic value. Existing computational methods analyze gene structure and sequence, functional annotation of candidate genes, characteristics of known disease genes, gene regulatory networks, protein-protein interactions, data from animal models and disease phenotype. To date, a few studies have success fully applied computational analysis of clinical phenotype data for specific diseases and shown genetic associations. In the near future, computational strategies will be facilitated by improved integration of clinical and computational research, and by increased availability of clinical phenotype data in a format accessible to computational approaches.
引用
收藏
页数:7
相关论文
共 67 条
[41]   MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression [J].
Nam, Seungyoon ;
Li, Meng ;
Choi, Kwangmin ;
Balch, Curtis ;
Kim, Sun ;
Nephew, Kenneth P. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :W356-W362
[42]   The modular nature of genetic diseases [J].
Oti, M. ;
Brunner, H. G. .
CLINICAL GENETICS, 2007, 71 (01) :1-11
[43]   Predicting disease genes using protein-protein interactions [J].
Oti, M. ;
Snel, B. ;
Huynen, M. A. ;
Brunner, H. G. .
JOURNAL OF MEDICAL GENETICS, 2006, 43 (08) :691-698
[44]   Association of genes to genetically inherited diseases using data mining [J].
Perez-Iratxeta, C ;
Bork, P ;
Andrade, MA .
NATURE GENETICS, 2002, 31 (03) :316-319
[45]   Update of the G2D tool for prioritization of gene candidates to inherited diseases [J].
Perez-Iratxeta, Carolina ;
Bork, Peer ;
Andrade-Navarro, Miguel A. .
NUCLEIC ACIDS RESEARCH, 2007, 35 :W212-W216
[46]   Towards completion of the Earth's proteome [J].
Perez-Iratxeta, Carolina ;
Palidwor, Gareth ;
Andrade-Navarro, Miguel A. .
EMBO REPORTS, 2007, 8 (12) :1135-1141
[47]   Searching for genetic determinants in the new millennium [J].
Risch, NJ .
NATURE, 2000, 405 (6788) :847-856
[48]   The Human Phenotype Ontology: A Tool for Annotating and Analyzing Human Hereditary Disease [J].
Robinson, Peter N. ;
Koehler, Sebastian ;
Bauer, Sebastian ;
Seelow, Dominik ;
Horn, Denise ;
Mundlos, Stefan .
AMERICAN JOURNAL OF HUMAN GENETICS, 2008, 83 (05) :610-615
[49]   Long-range conserved non-coding SHOX sequences regulate expression in developing chicken limb and are associated with short stature phenotypes in human patients [J].
Sabherwal, Nitin ;
Bangs, Fiona ;
Roeth, Ralph ;
Weiss, Birgit ;
Jantz, Karin ;
Tiecke, Eva ;
Hinkel, Georg K. ;
Spaich, Christiane ;
Hauffa, Berthold P. ;
van der Kamp, Hetty ;
Kapeller, Johannes ;
Tickle, Cheryll ;
Rappold, Gudrun .
HUMAN MOLECULAR GENETICS, 2007, 16 (02) :210-222
[50]   PhenoGO: an integrated resource for the multiscale mining of clinical and biological data [J].
Sam, Lee T. ;
Mendonca, Eneida A. ;
Li, Jianrong ;
Blake, Judith ;
Friedman, Carol ;
Lussier, Yves A. .
BMC BIOINFORMATICS, 2009, 10