Molecular dynamics simulations of hydrophilic pores in lipid bilayers

被引:234
作者
Leontiadou, H [1 ]
Mark, AE [1 ]
Marrink, SJ [1 ]
机构
[1] Univ Groningen, Dept Biophys Chem, Groningen, Netherlands
关键词
D O I
10.1016/S0006-3495(04)74275-7
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Hydrophilic pores are formed in peptide free lipid bilayers under mechanical stress. It has been proposed that the transport of ionic species across such membranes is largely determined by the existence of such meta-stable hydrophilic pores. To study the properties of these structures and understand the mechanism by which pore expansion leads to membrane rupture, a series of molecular dynamics simulations of a dipalmitoylphosphatidylcholine (DPPC) bilayer have been conducted. The system was simulated in two different states; first, as a bilayer containing a meta-stable pore and second, as an equilibrated bilayer without a pore. Surface tension in both cases was applied to study the formation and stability of hydrophilic pores inside the bilayers. It is observed that below a critical threshold tension of similar to38 mN/m the pores are stabilized. The minimum radius at which a pore can be stabilized is 0.7 nm. Based on the critical threshold tension the line tension of the bilayer was estimated to be similar to3x10(-11) N, in good agreement with experimental measurements. The flux of water molecules through these stabilized pores was analyzed, and the structure and size of the pores characterized. When the lateral pressure exceeds the threshold tension, the pores become unstable and start to expand causing the rupture of the membrane. In the simulations the mechanical threshold tension necessary to cause rupture of the membrane on a nanosecond timescale is much higher in the case of the equilibrated bilayers, as compared with membranes containing preexisting pores.
引用
收藏
页码:2156 / 2164
页数:9
相关论文
共 35 条
[1]   The breakdown of cell membranes by electrical and mechanical stress [J].
Akinlaja, J ;
Sachs, F .
BIOPHYSICAL JOURNAL, 1998, 75 (01) :247-254
[2]   Methodological issues in lipid bilayer simulations [J].
Anézo, C ;
de Vries, AH ;
Höltje, HD ;
Tieleman, DP ;
Marrink, SJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (35) :9424-9433
[3]   ELECTROPORATION - A UNIFIED, QUANTITATIVE THEORY OF REVERSIBLE ELECTRICAL BREAKDOWN AND MECHANICAL RUPTURE IN ARTIFICIAL PLANAR BILAYER-MEMBRANES [J].
BARNETT, A ;
WEAVER, JC .
BIOELECTROCHEMISTRY AND BIOENERGETICS, 1991, 25 (02) :163-182
[4]  
Berendsen H. J. C., 1981, INTERMOLECULAR FORCE
[5]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[6]   Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature [J].
Berger, O ;
Edholm, O ;
Jahnig, F .
BIOPHYSICAL JOURNAL, 1997, 72 (05) :2002-2013
[7]   INCORPORATION OF SURFACE-TENSION INTO MOLECULAR-DYNAMICS SIMULATION OF AN INTERFACE - A FLUID-PHASE LIPID BILAYER-MEMBRANE [J].
CHIU, SW ;
CLARK, M ;
BALAJI, V ;
SUBRAMANIAM, S ;
SCOTT, HL ;
JAKOBSSON, E .
BIOPHYSICAL JOURNAL, 1995, 69 (04) :1230-1245
[8]   Simulation of MscL Gating in a bilayer under stress [J].
Colombo, G ;
Marrink, SJ ;
Mark, AE .
BIOPHYSICAL JOURNAL, 2003, 84 (04) :2331-2337
[9]   PERMEABILITY OF LIPID BILAYERS TO WATER AND IONIC SOLUTES [J].
DEAMER, DW ;
BRAMHALL, J .
CHEMISTRY AND PHYSICS OF LIPIDS, 1986, 40 (2-4) :167-188
[10]   Dynamic strength of fluid membranes [J].
Evans, E ;
Heinrich, V .
COMPTES RENDUS PHYSIQUE, 2003, 4 (02) :265-274