Amino acid propensities for secondary structures are influenced by the protein structural class

被引:115
作者
Costantini, S
Colonna, G
Facchiano, AM [1 ]
机构
[1] CNR, Ist Sci Alimentaz, Lab Bioinformat & Biol Computaz, Avellino, Italy
[2] Univ Naples 2, Ctr Ric Interdipartimentale Sci Computaz & Biotec, Naples, Italy
[3] Univ Naples 2, Dipartmento Biochim & Biofis, Naples, Italy
关键词
amino acid propensities; structural class of proteins; protein structure; secondary structure prediction; statistical methods;
D O I
10.1016/j.bbrc.2006.01.159
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Amino acid propensities for secondary structures were used since the 1970s, when Chou and Fasman evaluated them within datasets of few tens of proteins and developed a method to predict secondary structure of proteins, still in use despite prediction methods having evolved to very different approaches and higher reliability. Propensity for secondary structures represents an intrinsic property of amino acid, and it is used for generating new algorithms and prediction methods, therefore our work has been aimed to investigate what is the best protein dataset to evaluate the amino acid propensities, either larger but not homogeneous or smaller but homogeneous sets, i.e., all-alpha, all-beta, and alpha-beta proteins. As a first analysis, we evaluated amino acid propensities for helix, beta-strand, and coil in more than 2000 proteins from the PDBselect dataset. With these propensities, secondary structure predictions performed with a method very similar to that of Chou and Fasman gave us results better than the original one, based on propensities derived from the few tens of X-ray protein structures available in the 1970s. In a refined analysis, we subdivided the PDBselect dataset of proteins in three secondary structural classes, i.e., all-alpha, all-beta, and alpha-beta proteins. For each class, the amino acid propensities for helix, beta-strand, and coil have been calculated and used to predict secondary structure elements for proteins belonging to the same class by using resubstitution and jackknife tests. This second round of predictions further improved the results of the first round. Therefore, amino acid propensities for secondary structures became more reliable depending on the degree of homogeneity of the protein dataset used to evaluate them. Indeed, our results indicate also that all algorithms using propensities for secondary structure can be still improved to obtain better predictive results. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:441 / 451
页数:11
相关论文
共 66 条
[1]   PRINCIPLES THAT GOVERN FOLDING OF PROTEIN CHAINS [J].
ANFINSEN, CB .
SCIENCE, 1973, 181 (4096) :223-230
[2]   SU proteins from virulent and avirulent EIAV demonstrate distinct biological properties [J].
Ball, JM ;
Swaggerty, CL ;
Pei, X ;
Lim, WS ;
Xu, X ;
Cox, VC ;
Payne, SL .
VIROLOGY, 2005, 333 (01) :132-144
[3]  
Chandonia JM, 1996, PROTEIN SCI, V5, P768
[4]   A NOVEL-APPROACH TO PREDICTING PROTEIN STRUCTURAL CLASSES IN A (20-1)-D AMINO-ACID-COMPOSITION SPACE [J].
CHOU, KC .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1995, 21 (04) :319-344
[5]  
Chou KC, 1998, PROTEINS, V31, P97, DOI 10.1002/(SICI)1097-0134(19980401)31:1<97::AID-PROT8>3.3.CO
[6]  
2-Y
[7]  
Chou P Y, 1978, Adv Enzymol Relat Areas Mol Biol, V47, P45
[8]   EMPIRICAL PREDICTIONS OF PROTEIN CONFORMATION [J].
CHOU, PY ;
FASMAN, GD .
ANNUAL REVIEW OF BIOCHEMISTRY, 1978, 47 :251-276
[9]   PREDICTION OF PROTEIN CONFORMATION [J].
CHOU, PY ;
FASMAN, GD .
BIOCHEMISTRY, 1974, 13 (02) :222-245
[10]  
CHOU PY, 1989, PREDICTION PROTEIN S, P549, DOI DOI 10.1007/978-1-4613-1571-1_12