A role for the two-helix finger of the SecA ATPase in protein translocation

被引:107
作者
Erlandson, Karl J. [1 ,2 ]
Miller, Stephanie B. M. [1 ,2 ]
Nam, Yunsun [1 ,2 ]
Osborne, Andrew R. [1 ,2 ]
Zimmer, Jochen [1 ,2 ]
Rapoport, Tom A. [1 ,2 ]
机构
[1] Harvard Univ, Sch Med, Howard Hughes Med Inst, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
关键词
D O I
10.1038/nature07439
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An important step in the biosynthesis of many proteins is their partial or complete translocation across the plasma membrane in prokaryotes or the endoplasmic reticulum membrane in eukaryotes(1). In bacteria, secretory proteins are generally translocated after completion of their synthesis by the interaction of the cytoplasmic ATPase SecA and a protein- conducting channel formed by the SecY complex(2). How SecA moves substrates through the SecY channel is unclear. However, a recent structure of a SecA - SecY complex raises the possibility that the polypeptide chain is moved by a two- helix finger domain of SecA that is inserted into the cytoplasmic opening of the SecY channel(3). Here we have used disulphide- bridge cross-linking to show that the loop at the tip of the two- helix finger of Escherichia coli SecA interacts with a polypeptide chain right at the entrance into the SecY pore. Mutagenesis demonstrates that a tyrosine in the loop is particularly important for translocation, but can be replaced by some other bulky, hydrophobic residues. We propose that the two- helix finger of SecA moves a polypeptide chain into the SecY channel with the tyrosine providing the major contact with the substrate, a mechanism analogous to that suggested for hexameric, protein- translocating ATPases.
引用
收藏
页码:984 / U67
页数:5
相关论文
共 27 条
[1]   Determinants of the streptococcal surface glycoprotein GspB that facilitate export by the accessory Sec system [J].
Bensing, BA ;
Takamatsu, D ;
Sullam, PM .
MOLECULAR MICROBIOLOGY, 2005, 58 (05) :1468-1481
[2]   THE PURIFIED ESCHERICHIA-COLI INTEGRAL MEMBRANE-PROTEIN SECY/E IS SUFFICIENT FOR RECONSTITUTION OF SECA-DEPENDENT PRECURSOR PROTEIN TRANSLOCATION [J].
BRUNDAGE, L ;
HENDRICK, JP ;
SCHIEBEL, E ;
DRIESSEN, AJM ;
WICKNER, W .
CELL, 1990, 62 (04) :649-657
[3]   Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY [J].
Cannon, KS ;
Or, E ;
Clemons, WM ;
Shibata, Y ;
Rapoport, TA .
JOURNAL OF CELL BIOLOGY, 2005, 169 (02) :219-225
[4]   Projection structure and oligomeric properties of a bacterial core protein translocase [J].
Collinson, I ;
Breyton, C ;
Duong, F ;
Tziatzios, C ;
Schubert, D ;
Or, E ;
Rapoport, T ;
Kühlbrandt, W .
EMBO JOURNAL, 2001, 20 (10) :2462-2471
[5]   Central pore residues mediate the p97/VCP activity required for ERAD [J].
DeLaBarre, Byron ;
Christianson, John C. ;
Kopito, Ron R. ;
Brunger, Axel T. .
MOLECULAR CELL, 2006, 22 (04) :451-462
[6]   SECA PROMOTES PREPROTEIN TRANSLOCATION BY UNDERGOING ATP-DRIVEN CYCLES OF MEMBRANE INSERTION AND DEINSERTION [J].
ECONOMOU, A ;
WICKNER, W .
CELL, 1994, 78 (05) :835-843
[7]   Analysis of polypeptide movement in the SecY channel during SecA-mediated protein translocation [J].
Erlandson, Karl J. ;
Or, Eran ;
Osborne, Andrew R. ;
Rapoport, Tom A. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (23) :15709-15715
[8]   Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking [J].
Harris, CR ;
Silhavy, TJ .
JOURNAL OF BACTERIOLOGY, 1999, 181 (11) :3438-3444
[9]   Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation [J].
Hinnerwisch, J ;
Fenton, WA ;
Furtak, KJ ;
Farr, GW ;
Horwich, AL .
CELL, 2005, 121 (07) :1029-1041
[10]   Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA [J].
Hunt, JF ;
Weinkauf, S ;
Henry, L ;
Fak, JJ ;
McNicholas, P ;
Oliver, DB ;
Deisenhofer, J .
SCIENCE, 2002, 297 (5589) :2018-2026