Resonance frequency of microbubbles in small blood vessels: a numerical study

被引:91
作者
Sassaroli, E [1 ]
Hynynen, K [1 ]
机构
[1] Harvard Univ, Brigham & Womens Hosp, Sch Med, Focused Ultrasound Lab, Boston, MA 02115 USA
关键词
D O I
10.1088/0031-9155/50/22/006
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Microbubbles are currently used as ultrasound contrast agents. Their potential therapeutic applications are also under investigation. This work is designed to provide some insight into the mechanisms of energy absorption and deposition by a preformed gas bubble in the microvasculature to optimize its efficacy. In the linear regime, the most favourable condition for the transfer of energy from an ultrasonic field to a gas bubble occurs when the centre frequency of the ultrasonic field equals the resonance frequency of the bubble. The resonance frequency of gas microbubbles has been investigated up to now mainly in unbounded liquids; however when bubbles are confined in small regions, their resonance frequency is strongly affected by the surrounding boundaries. A parametric study on how the resonance frequency of microbubbles in blood vessels is affected by the bubble radius, vessel radius and the bubble position in the vessel is presented. The resonance frequency decreases below its free value with decreasing vessel radius for vessels smaller than 200-300 mu m depending on the bubble size. This model suggests the possibility of using ultrasound in a range of frequencies that are, in general, lower than the ones used now for therapeutic and diagnostic applications of ultrasound (a few MHz). When microbubbles oscillate at their resonance frequency they absorb and therefore emit more energy. This energy may allow specific blood vessels to be targeted for both diagnostic and therapeutic applications of ultrasound.
引用
收藏
页码:5293 / 5305
页数:13
相关论文
共 45 条
[1]  
Bao SP, 1998, CANCER RES, V58, P219
[2]   Science, medicine, and the future - Microbubble contrast agents: a new era in ultrasound [J].
Blomley, MJK ;
Cooke, JC ;
Unger, EC ;
Monaghan, MJ ;
Cosgrove, DO .
BMJ-BRITISH MEDICAL JOURNAL, 2001, 322 (7296) :1222-1225
[3]   Transient poration and cell surface receptor removal from human lymphocytes in vitro by 1 MHZ ultrasound [J].
Brayman, AA ;
Coppage, ML ;
Vaidya, S ;
Miller, MW .
ULTRASOUND IN MEDICINE AND BIOLOGY, 1999, 25 (06) :999-1008
[4]  
Burns PN, 1997, J NEUROIMAGING, V7, pS2
[5]  
BURTON AC, 1966, FED PROC, V25, P1753
[6]   THERMAL EFFECTS IN FREE OSCILLATION OF GAS BUBBLES [J].
CHAPMAN, RB ;
PLESSET, MS .
JOURNAL OF BASIC ENGINEERING, 1971, 93 (03) :373-&
[7]   THE EFFECTS OF AN ELASTIC SOLID-SURFACE LAYER ON THE RADIAL PULSATIONS OF GAS-BUBBLES [J].
CHURCH, CC .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1995, 97 (03) :1510-1521
[8]   PHYSICAL AND CHEMICAL ASPECTS OF ULTRASONIC DISRUPTION OF CELLS [J].
CLARKE, PR ;
HILL, CR .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1970, 47 (02) :649-&
[9]   The influence of contrast agents on hemorrhage produced by lithotripter fields [J].
Dalecki, D ;
Raeman, CH ;
Child, SZ ;
Penney, DP ;
Mayer, R ;
Carstensen, EL .
ULTRASOUND IN MEDICINE AND BIOLOGY, 1997, 23 (09) :1435-1439
[10]   ULTRASOUND SCATTERING PROPERTIES OF ALBUNEX MICROSPHERES [J].
DEJONG, N ;
HOFF, L .
ULTRASONICS, 1993, 31 (03) :175-181