Human Na+/H+ exchanger isoform 6 is found in recycling endosomes of cells, not in mitochondria

被引:131
作者
Brett, CL
Wei, Y
Donowitz, M
Rao, R
机构
[1] Johns Hopkins Univ, Sch Med, Dept Physiol, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, Dept Med, Baltimore, MD 21205 USA
来源
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY | 2002年 / 282卷 / 05期
关键词
intraendosomal pH; Nhx1; intracellular NHE;
D O I
10.1152/ajpcell.00420.2001
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Since the discovery of the first intracellular Na+/H+ exchanger in yeast, Nhx1, multiple homologs have been cloned and characterized in plants. Together, studies in these organisms demonstrate that Nhx1 is located in the prevacuolar/vacuolar compartment of cells where it sequesters Na+ into the vacuole, regulates intravesicular pH, and contributes to vacuolar biogenesis. In contrast, the human homolog of Nhx1, Na+/H+ exchanger isoform 6 (NHE6), has been reported to localize to mitochondria when transiently expressed as a fusion with green fluorescent protein. This result warrants reevaluation because it conflicts with predictions from phylogenetic analyses. Here we demonstrate that when epitope-tagged NHE6 is transiently expressed in cultured mammalian cells, it does not colocalize with mitochondrial markers. It also does not colocalize with markers of the lysosome, late endosome, trans-Golgi network, or Golgi cisternae. Rather, NHE6 is distributed in recycling compartments and transiently appears on the plasma membrane. These results suggest that, like its homologs in yeast and plants, NHE6 is an endosomal Na+/H+ exchanger that may regulate intravesicular pH and volume and contribute to lysosomal biogenesis.
引用
收藏
页码:C1031 / C1041
页数:11
相关论文
共 37 条
[1]   Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis [J].
Apse, MP ;
Aharon, GS ;
Snedden, WA ;
Blumwald, E .
SCIENCE, 1999, 285 (5431) :1256-1258
[2]   Mitochondrial transport of cations: Channels, exchangers, and permeability transition [J].
Bernardi, P .
PHYSIOLOGICAL REVIEWS, 1999, 79 (04) :1127-1155
[3]   The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae [J].
Bowers, K ;
Levi, BP ;
Patel, FI ;
Stevens, TH .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (12) :4277-4294
[4]   Na+/H+ exchangers (NHE1-3) have similar turnover numbers but different percentages on the cell surface [J].
Cavet, ME ;
Akhter, S ;
De Medina, FS ;
Donowitz, M ;
Tse, CM .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1999, 277 (06) :C1111-C1121
[5]   The expanding family of eucaryotic Na+/H+ exchangers [J].
Counillon, L ;
Pouysségur, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (01) :1-4
[6]   The epithelial sodium-hydrogen antiporter Na+/H+ exchanger 3 accumulates and is functional in recycling endosomes [J].
D'Souza, S ;
Garcia-Cabado, A ;
Yu, F ;
Teter, K ;
Lukacs, G ;
Skorecki, K ;
Moore, HP ;
Orlowski, J ;
Grinstein, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (04) :2035-2043
[7]   Arabidopsis thaliana and Saccharomyces cerevisiae NHX1 genes encode amiloride sensitive electroneutral Na+-/H+ exchangers [J].
Darley, CP ;
van Wuytswinkel, OCM ;
van der Woude, K ;
Mager, WH ;
de Boer, AH .
BIOCHEMICAL JOURNAL, 2000, 351 :241-249
[8]   Colour-enhancing protein in blue petals - Spectacular morning glory blooms rely on a behind-the-scenes proton exchanger. [J].
Fukada-Tanaka, S ;
Inagaki, Y ;
Yamaguchi, T ;
Saito, N ;
Iida, S .
NATURE, 2000, 407 (6804) :581-581
[9]   Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa [J].
Fukuda, A ;
Nakamura, A ;
Tanaka, Y .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 1999, 1446 (1-2) :149-155
[10]   Generation of epitope-tagged proteins by inverse PCR mutagenesis [J].
Gama, L ;
Breitwieser, GE .
BIOTECHNIQUES, 1999, 26 (05) :814-+