Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage

被引:181
作者
Sheng, Gang [1 ]
Zhao, Hongtu [1 ,2 ]
Wang, Jiuyu [1 ]
Rao, Yu [1 ]
Tian, Wenwen [1 ,2 ]
Swarts, Daan C. [3 ]
van der Oost, John [3 ]
Patel, Dinshaw J. [4 ]
Wang, Yanli [1 ]
机构
[1] Chinese Acad Sci, Inst Biophys, Lab Noncoding RNA, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Wageningen Univ, Dept Agrotechnol & Food Sci, Microbiol Lab, NL-6703 HB Wageningen, Netherlands
[4] Mem Sloan Kettering Canc Ctr, Struct Biol Program, New York, NY 10065 USA
基金
美国国家卫生研究院;
关键词
bacterial Argonaute; catalytic mechanism; DNA guide-DNA target; CRYSTAL-STRUCTURE; RNA RECOGNITION; SILENCING COMPLEX; PROTEINS; RISC; INSIGHTS; SYSTEM;
D O I
10.1073/pnas.1321032111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report on crystal structures of ternary Thermus thermophilus Argonaute (TtAgo) complexes with 5'-phosphorylated guide DNA and a series of DNA targets. These ternary complex structures of cleavage-incompatible, cleavage-compatible, and postcleavage states solved at improved resolution up to 2.2 angstrom have provided molecular insights into the orchestrated positioning of catalytic residues, a pair of Mg2+ cations, and the putative water nucleophile positioned for in-line attack on the cleavable phosphate for TtAgo-mediated target cleavage by a RNase H-type mechanism. In addition, these ternary complex structures have provided insights into protein and DNA conformational changes that facilitate transition between cleavage-incompatible and cleavage-compatible states, including the role of a Glu finger in generating a cleavage-competent catalytic Asp-Glu-Asp-Asp tetrad. Following cleavage, the seed segment forms a stable duplex with the complementary segment of the target strand.
引用
收藏
页码:652 / 657
页数:6
相关论文
共 38 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   Molecular basis for target RNA recognition and cleavage by human RISC [J].
Ameres, Stefan Ludwig ;
Martinez, Javier ;
Schroeder, Renee .
CELL, 2007, 130 (01) :101-112
[3]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498
[4]   The Structure of Human Argonaute-2 in Complex with miR-20a [J].
Elkayam, Elad ;
Kuhn, Claus-D. ;
Tocilj, Ante ;
Haase, Astrid D. ;
Greene, Emily M. ;
Hannon, Gregory J. ;
Joshua-Tor, Leemor .
CELL, 2012, 150 (01) :100-110
[5]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132
[6]   Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2 [J].
Frank, Filipp ;
Sonenberg, Nahum ;
Nagar, Bhushan .
NATURE, 2010, 465 (7299) :818-822
[7]   Argonaute proteins: key players in RNA silencing [J].
Hutvagner, Gyorgy ;
Simard, Martin J. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2008, 9 (01) :22-32
[8]   A three-dimensional view of the molecular machinery of RNA interference [J].
Jinek, Martin ;
Doudna, Jennifer A. .
NATURE, 2009, 457 (7228) :405-412
[9]   Making RISC [J].
Kawamata, Tomoko ;
Tomari, Yukihide .
TRENDS IN BIOCHEMICAL SCIENCES, 2010, 35 (07) :368-376
[10]   Novel modes of protein-RNA recognition in the RNAi pathway [J].
Lingel, A ;
Sattler, M .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2005, 15 (01) :107-115