Preparation and characterization of biodegradable nanoparticles based on poly(γ-glutamic acid) with L-phenylalanine as a protein carrier

被引:154
作者
Akagi, T
Kaneko, T
Kida, T
Akashi, M
机构
[1] Osaka Univ, Dept Appl Chem, Grad Sch Engn, Suita, Osaka 5650871, Japan
[2] Japan Sci & Technol Agcy, JST, CREST, Tokyo, Japan
基金
日本科学技术振兴机构;
关键词
poly(gamma-glutamic acid); biodegradation; nanoparticles; amphiphilic; encapsulation;
D O I
10.1016/j.jconrel.2005.08.003
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The objective of the present study was to prepare nanoparticles composed of poly(gamma-glutamic acid) (gamma-PGA) and (L)-phenylalanine ethylester ((L)-PAE) in order to evaluate the possibility of using these nanoparticles as protein carriers. Novel amphiphilic graft copolymers composed of gamma-PGA as the hydrophilic backbone and L-PAE as the hydrophobic segment were successfully synthesized by grafting L-PAE to gamma-PGA using water-soluble carbodiimide (WSC). Due to their amphiphilic properties, the gamma-PGA-graft-(L)-PAE copolymers were able to form nanoparticles. The size of the gamma-PGA nanoparticles was measured by photon correlation spectroscopy (PCs) and showed a monodispersed size distribution with a mean diameter ranging from 150 to 200 nm. The solvents selected to prepare the gamma-PGA nanoparticles by a precipitation and dialysis method affected the particle size distribution. To evaluate the feasibility of vehicles for these proteins, we prepared protein-loaded gamma-PGA nanoparticles by surface immobilization and encapsulation methods. Ovalbumin (OVA) was used as a model protein and was immobilized onto the gamma-PGA nanoparticles or encapsulated into the inner core of these nanoparticles. Moreover, these OVA-encapsulated gamma-PGA nanoparticles could be preserved by freeze-drying process. The results of cytotoxicity tests showed that the gamma-PGA and gamma-PGA nanoparticles did not cause any relevant cell damage. It is expected that biodegradable gamma-PGA nanoparticles can immobilize proteins, peptides, plasmid DNA and drugs onto their surfaces and/or into the nanoparticles. These nanoparticles are potentially useful in pharmaceutical and biomedical applications. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:226 / 236
页数:11
相关论文
共 46 条
[1]   In vitro enzymatic degradation of nanoparticles prepared from hydrophobically-modified poly(γ-glutamic acid) [J].
Akagi, T ;
Higashi, M ;
Kaneko, T ;
Kida, T ;
Akashi, M .
MACROMOLECULAR BIOSCIENCE, 2005, 5 (07) :598-602
[2]   Mucosal immunization with inactivated HIV-1-capturing nanospheres induces a significant HIV-1-specific vaginal antibody response in mice [J].
Akagi, T ;
Kawamura, M ;
Ueno, M ;
Hiraishi, K ;
Adachi, M ;
Serizawa, T ;
Akashi, M ;
Baba, M .
JOURNAL OF MEDICAL VIROLOGY, 2003, 69 (02) :163-172
[3]   GRAFT-COPOLYMERS HAVING HYDROPHOBIC BACKBONE AND HYDROPHILIC BRANCHES .4. A COPOLYMERIZATION STUDY OF WATER-SOLUBLE OLIGOVINYLPYRROLIDONE MACROMONOMERS [J].
AKASHI, M ;
YANAGI, T ;
YASHIMA, E ;
MIYAUCHI, N .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 1989, 27 (10) :3521-3530
[4]   Graft copolymers having hydrophobic backbone and hydrophilic branches part XIV - Capture of HIV-1 gp120 and virions by lectin-immobilized polystyrene nanospheres [J].
Akashi, M ;
Niikawa, T ;
Serizawa, T ;
Hayakawa, T ;
Baba, M .
BIOCONJUGATE CHEMISTRY, 1998, 9 (01) :50-53
[5]   Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: Complexation and stabilization of insulin [J].
Akiyoshi, K ;
Kobayashi, S ;
Shichibe, S ;
Mix, D ;
Baudys, M ;
Kim, SW ;
Sunamoto, J .
JOURNAL OF CONTROLLED RELEASE, 1998, 54 (03) :313-320
[6]   SELF-AGGREGATES OF HYDROPHOBIZED POLYSACCHARIDES IN WATER - FORMATION AND CHARACTERISTICS OF NANOPARTICLES [J].
AKIYOSHI, K ;
DEGUCHI, S ;
MORIGUCHI, N ;
YAMAGUCHI, S ;
SUNAMOTO, J .
MACROMOLECULES, 1993, 26 (12) :3062-3068
[7]   Drug delivery systems: Entering the mainstream [J].
Allen, TM ;
Cullis, PR .
SCIENCE, 2004, 303 (5665) :1818-1822
[8]   Preparation of platinum colloids on polystyrene nanospheres and their catalytic properties in hydrogenation [J].
Chen, CW ;
Serizawa, T ;
Akashi, M .
CHEMISTRY OF MATERIALS, 1999, 11 (05) :1381-1389
[9]   Effects of emulsifiers on the controlled release of paclitaxel (Taxol®) from nanospheres of biodegradable polymers [J].
Feng, SS ;
Huang, GF .
JOURNAL OF CONTROLLED RELEASE, 2001, 71 (01) :53-69
[10]   Polysaccharides grafted with polyesters: Novel amphiphilic copolymers for biomedical applications [J].
Gref, R ;
Rodrigues, J ;
Couvreur, P .
MACROMOLECULES, 2002, 35 (27) :9861-9867