Graphene/porous cobalt nanocomposite and its noticeable electrochemical hydrogen storage ability at room temperature

被引:81
作者
Chen, Yujin [1 ]
Wang, Qingshan [1 ]
Zhu, Chunling [2 ]
Gao, Peng [2 ]
Ouyang, Qiuyun [1 ]
Wang, Tieshi [1 ]
Ma, Yang [1 ]
Sun, Chunwen [3 ]
机构
[1] Harbin Engn Univ, Coll Sci, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Harbin 150001, Heilongjiang, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
WALLED CARBON NANOTUBES; METAL-ORGANIC FRAMEWORKS; SITES; TI; NANOSTRUCTURE; NI;
D O I
10.1039/c2jm16825a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene/porous cobalt nanocomposite was successfully prepared through a facile method, whose hydrogen storage capacity was up to 241.9 mA h g(-1) at room temperature, higher than those of graphene and commercial cobalt.
引用
收藏
页码:5924 / 5927
页数:4
相关论文
共 36 条
[11]   Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites [J].
Dinca, Mircea ;
Dailly, Anne ;
Liu, Yun ;
Brown, Craig M. ;
Neumann, Dan. A. ;
Long, Jeffrey R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (51) :16876-16883
[12]   Multifunctional Porous Graphene for Nanoelectronics and Hydrogen Storage: New Properties Revealed by First Principle Calculations [J].
Du, Aijun ;
Zhu, Zhonghua ;
Smith, Sean C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (09) :2876-+
[13]   Functionalization of carbon-based nanostructures with light transition-metal atoms for hydrogen storage [J].
Durgun, E. ;
Ciraci, S. ;
Yildirim, T. .
PHYSICAL REVIEW B, 2008, 77 (08)
[14]   A facile solution-chemistry method for Cu(OH)2 nanoribbon arrays with noticeable electrochemical hydrogen storage ability at room temperature [J].
Gao, Peng ;
Zhang, Milin ;
Niu, Zhongyi ;
Xiao, Quanping .
CHEMICAL COMMUNICATIONS, 2007, (48) :5197-5199
[15]   A simple recycling and reuse hydrothermal route to ZnO nanorod arrays, nanoribbon bundles, nanosheets, nanocubes and nanoparticles [J].
Gao, Peng ;
Chen, Yujin ;
Wang, Ying ;
Zhang, Qin ;
Li, Xuefei ;
Hu, Min .
CHEMICAL COMMUNICATIONS, 2009, (19) :2762-2764
[16]   H2 storage materials (22KJ/mol) using organometallic Ti fragments as σ-H2 binding sites [J].
Hamaed, Ahmad ;
Trudeau, Michel ;
Antonelli, David M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (22) :6992-6999
[17]   Covalent organic frameworks as exceptional hydrogen storage materials [J].
Han, Sang Soo ;
Furukawa, Hiroyasu ;
Yaghi, Omar M. ;
Goddard, William A., III .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (35) :11580-+
[18]   Hydrogen storage in the dehydrated Prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn) [J].
Kaye, SS ;
Long, JR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (18) :6506-6507
[19]   Effective metal dispersion in pyridinelike nitrogen doped graphenes for hydrogen storage [J].
Kim, Gyubong ;
Jhi, Seung-Hoon ;
Park, Noejung .
APPLIED PHYSICS LETTERS, 2008, 92 (01)
[20]   Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101 [J].
Latroche, Michel ;
Surble, Suzy ;
Serre, Christian ;
Mellot-Draznieks, Caroline ;
Llewellyn, Philip L. ;
Lee, Jin-Ho ;
Chang, Jong-San ;
Jhung, Sung Hwa ;
Ferey, Gerard .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (48) :8227-8231