Modeling of resistive wall mode and its control in experiments and ITER

被引:34
作者
Liu, Yueqiang [1 ]
Chu, M. S.
Garofalo, A. M.
La Haye, R. J.
Gribov, Y.
Gryaznevich, M.
Hender, T. C.
Howell, D. F.
de Vries, P.
Okabayashi, M.
Pinches, S. D.
Reimerdes, H.
机构
[1] Chalmers Univ Technol, EURATOM, VR Fus Assoc, Dept Appl Mech, S-41296 Gothenburg, Sweden
[2] Gen Atom Co, San Diego, CA 92186 USA
[3] ITER Naka Joint Work Site, Phys Unit, Ibaraki 3110193, Japan
[4] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[5] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[6] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany
[7] Columbia Univ, New York, NY 10027 USA
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1063/1.2177199
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Active control of the resistive wall mode (RWM) for DIII-D [Luxon and Davis, Fusion Technol. 8, 441 (1985)] plasmas is studied using the MARS-F code [Y. Q. Liu, , Phys. Plasmas 7, 3681 (2000)]. Control optimization shows that the mode can be stabilized up to the ideal wall beta limit, using the internal control coils (I-coils) and poloidal sensors located at the outboard midplane, in combination with an ideal amplifier. With the present DIII-D power supply model, the stabilization is achieved up to 70% of the range between no-wall and ideal-wall limits. Reasonably good quantitative agreement is achieved between MARS-F simulations and experiments on DIII-D and JET (Joint European Torus) [P. H. Rebut , Nucl. Fusion 25, 1011 (1985)] on critical rotation for the mode stabilization. Dynamics of rotationally stabilized plasmas is well described by a single mode approximation; whilst a strongly unstable plasma requires a multiple mode description. For ITER [R. Aymar, P. Barabaschi, and Y. Shimomura, Plasma Phys. Controlled Fusion 44, 519 (2002)], the MARS-F simulations show the plasma rotation may not provide a robust mechanism for the RWM stabilization in the advanced scenario. With the assumption of ideal amplifiers, and using optimally tuned controllers and sensor signals, the present feedback coil design in ITER allows stabilization of the n=1 RWM for plasma pressures up to 80% of the range between the no-wall and ideal-wall limits. (c) 2006 American Institute of Physics.
引用
收藏
页数:9
相关论文
共 43 条
[1]   Modeling of active control of external magnetohydrodynamic instabilities [J].
Bialek, J ;
Boozer, AH ;
Mauel, ME ;
Navratil, GA .
PHYSICS OF PLASMAS, 2001, 8 (05) :2170-2180
[2]   AN INTELLIGENT SHELL FOR THE TOROIDAL PINCH [J].
BISHOP, CM .
PLASMA PHYSICS AND CONTROLLED FUSION, 1989, 31 (07) :1179-1189
[3]   RESISTIVE TOROIDAL STABILITY OF INTERNAL KINK MODES IN CIRCULAR AND SHAPED TOKAMAKS [J].
BONDESON, A ;
VLAD, G ;
LUTJENS, H .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (07) :1889-1900
[4]   Active control of resistive wall modes in the large-aspect-ratio tokamak [J].
Bondeson, A ;
Liu, YQ ;
Gregoratto, D ;
Gribov, Y ;
Pustovitov, VD .
NUCLEAR FUSION, 2002, 42 (06) :768-779
[5]   Inertia and ion Landau damping of low-frequency magnetohydrodynamical modes in tokamaks [J].
Bondeson, A ;
Chu, MS .
PHYSICS OF PLASMAS, 1996, 3 (08) :3013-3022
[6]   Physics and control of resistive wall modes [J].
Bondeson, A ;
Liu, YQ ;
Gregoratto, D ;
Fransson, CM ;
Lennartson, B ;
Breitholtz, C ;
Gribov, Y ;
Pustovitov, VD .
PHYSICS OF PLASMAS, 2002, 9 (05) :2044-2050
[7]   STABILIZATION OF EXTERNAL-MODES IN TOKAMAKS BY RESISTIVE WALLS AND PLASMA ROTATION [J].
BONDESON, A ;
WARD, DJ .
PHYSICAL REVIEW LETTERS, 1994, 72 (17) :2709-2712
[8]   MHD beta limits for advanced scenarios on JET [J].
Bondeson, A ;
Liu, DH ;
Söldner, FX ;
Persson, M ;
Baranov, YF ;
Huysmans, GTA .
NUCLEAR FUSION, 1999, 39 (11) :1523-1533
[9]   Robust feedback systems for resistive wall modes [J].
Boozer, AH .
PHYSICS OF PLASMAS, 2004, 11 (01) :110-114
[10]   Error field amplification and rotation damping in tokamak plasmas [J].
Boozer, AH .
PHYSICAL REVIEW LETTERS, 2001, 86 (22) :5059-5061