Dynamics of origination and extinction in the marine fossil record

被引:345
作者
Alroy, John [1 ]
机构
[1] Univ Calif Santa Barbara, Natl Ctr Ecol Anal & Synth, Santa Barbara, CA 93101 USA
基金
美国国家科学基金会;
关键词
biodiversity; macroevolution; mass extinction;
D O I
10.1073/pnas.0802597105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The discipline-wide effort to database the fossil record at the occurrence level has made it possible to estimate marine invertebrate extinction and origination rates with much greater accuracy. The new data show that two biotic mechanisms have hastened recoveries from mass extinctions and confined diversity to a relatively narrow range over the past 500 million years (Myr). First, a drop in diversity of any size correlates with low extinction rates immediately afterward, so much so that extinction would almost come to a halt if diversity dropped by 90%. Second, very high extinction rates are followed by equally high origination rates. The two relationships predict that the rebound from the current mass extinction will take at least 10 Myr, and perhaps 40 Myr if it rivals the Permo-Triassic catastrophe. Regardless, any large event will result in a dramatic ecological and taxonomic restructuring of the biosphere. The data also confirm that extinction and origination rates both declined through the Phanerozoic and that several extinctions in addition to the Permo-Triassic event were particularly severe. However, the trend may be driven by taxonomic biases and the rates vary in accord with a simple log normal distribution, so there is no sharp distinction between background and mass extinctions. Furthermore, the lack of any significant autocorrelation in the data is inconsistent with macroevolutionary theories of periodicity or self-organized criticality.
引用
收藏
页码:11536 / 11542
页数:7
相关论文
共 82 条
[51]   Genus extinction, origination, and the durations of sedimentary hiatuses [J].
Peters, Shanan E. .
PALEOBIOLOGY, 2006, 32 (03) :387-407
[52]   ECOSYSTEM ORGANIZATION AND EXTINCTION DYNAMICS [J].
PLOTNICK, RE ;
MCKINNEY, ML .
PALAIOS, 1993, 8 (02) :202-212
[53]   MASS EXTINCTIONS IN THE FOSSIL RECORD [J].
QUINN, JF .
SCIENCE, 1983, 219 (4589) :1239-1240
[54]  
RAUP D M, 1976, Paleobiology, V2, P279
[55]   LARGE-BODY IMPACT AND EXTINCTION IN THE PHANEROZOIC [J].
RAUP, DM .
PALEOBIOLOGY, 1992, 18 (01) :80-88
[56]   MATHEMATICAL-MODELS OF CLADOGENESIS [J].
RAUP, DM .
PALEOBIOLOGY, 1985, 11 (01) :42-52
[57]   BIOLOGICAL EXTINCTION IN EARTH HISTORY [J].
RAUP, DM .
SCIENCE, 1986, 231 (4745) :1528-1533
[58]  
RAUP DM, 1983, SCIENCE, V219, P1240, DOI 10.1126/science.219.4589.1240
[59]   PERIODICITY OF EXTINCTIONS IN THE GEOLOGIC PAST [J].
RAUP, DM ;
SEPKOSKI, JJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (03) :801-805
[60]   MASS EXTINCTIONS IN THE MARINE FOSSIL RECORD [J].
RAUP, DM ;
SEPKOSKI, JJ .
SCIENCE, 1982, 215 (4539) :1501-1503