Network Inference Algorithms Elucidate Nrf2 Regulation of Mouse Lung Oxidative Stress

被引:71
作者
Taylor, Ronald C. [1 ]
Acquaah-Mensah, George [2 ]
Singhal, Mudita [1 ]
Malhotra, Deepti [3 ]
Biswal, Shyam [3 ]
机构
[1] US DOE, Computat Biol & Bioinformat Grp, Pacific NW Natl Lab, Richland, WA USA
[2] Massachusetts Coll Pharm & Hlth Sci, Dept Pharmaceut Sci, Worcester, MA USA
[3] Johns Hopkins Univ, Dept Environm Hlth Sci, Bloomberg Sch Publ Hlth, Baltimore, MD 21205 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1371/journal.pcbi.1000166
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A variety of cardiovascular, neurological, and neoplastic conditions have been associated with oxidative stress, i.e., conditions under which levels of reactive oxygen species (ROS) are elevated over significant periods. Nuclear factor erythroid 2-related factor (Nrf2) regulates the transcription of several gene products involved in the protective response to oxidative stress. The transcriptional regulatory and signaling relationships linking gene products involved in the response to oxidative stress are, currently, only partially resolved. Microarray data constitute RNA abundance measures representing gene expression patterns. In some cases, these patterns can identify the molecular interactions of gene products. They can be, in effect, proxies for protein-protein and protein-DNA interactions. Traditional techniques used for clustering coregulated genes on high-throughput gene arrays are rarely capable of distinguishing between direct transcriptional regulatory interactions and indirect ones. In this study, newly developed information-theoretic algorithms that employ the concept of mutual information were used: the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE), and Context Likelihood of Relatedness (CLR). These algorithms captured dependencies in the gene expression profiles of the mouse lung, allowing the regulatory effect of Nrf2 in response to oxidative stress to be determined more precisely. In addition, a characterization of promoter sequences of Nrf2 regulatory targets was conducted using a Support Vector Machine classification algorithm to corroborate ARACNE and CLR predictions. Inferred networks were analyzed, compared, and integrated using the Collective Analysis of Biological Interaction Networks (CABIN) plug-in of Cytoscape. Using the two network inference algorithms and one machine learning algorithm, a number of both previously known and novel targets of Nrf2 transcriptional activation were identified. Genes predicted as novel Nrf2 targets include Atf1, Srxn1, Prnp, Sod2, Als2, Nfkbib, and Ppp1r15b. Furthermore, microarray and quantitative RT-PCR experiments following cigarette-smoke-induced oxidative stress in Nrf2(+/+) and Nrf2(-/-) mouse lung affirmed many of the predictions made. Several new potential feed-forward regulatory loops involving Nrf2, Nqo1, Srxn1, Prdx1, Als2, Atf1, Sod1, and Park7 were predicted. This work shows the promise of network inference algorithms operating on high-throughput gene expression data in identifying transcriptional regulatory and other signaling relationships implicated in mammalian disease.
引用
收藏
页数:15
相关论文
共 60 条
[1]   Ethanol sensitivity: a central role for CREB transcription regulation in the cerebellum [J].
Acquaah-Mensah, George K. ;
Misra, Vikas ;
Biswal, Shyam .
BMC GENOMICS, 2006, 7 (1)
[2]  
*AG, AG LIT SEARCH CYT PL
[3]  
Alon U, 2007, INTRO SYSTEMS BIOL D
[4]   Network motifs: theory and experimental approaches [J].
Alon, Uri .
NATURE REVIEWS GENETICS, 2007, 8 (06) :450-461
[5]  
[Anonymous], 2005, Data Mining Pratical Machine Learning Tools and Techniques
[6]  
[Anonymous], 2007, LIBSVM: a Library for Support Vector Machines
[7]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[8]   Reverse engineering of regulatory networks in human B cells [J].
Basso, K ;
Margolin, AA ;
Stolovitzky, G ;
Klein, U ;
Dalla-Favera, R ;
Califano, A .
NATURE GENETICS, 2005, 37 (04) :382-390
[9]   ATP-dependent reduction of cysteine-sulphinic acid by S-cerevisiae sulphiredoxin [J].
Biteau, B ;
Labarre, J ;
Toledano, MB .
NATURE, 2003, 425 (6961) :980-984
[10]   Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism [J].
Bonifati, V ;
Rizzu, P ;
van Baren, MJ ;
Schaap, O ;
Breedveld, GJ ;
Krieger, E ;
Dekker, MCJ ;
Squitieri, F ;
Ibanez, P ;
Joosse, M ;
van Dongen, JW ;
Vanacore, N ;
van Swieten, JC ;
Brice, A ;
Meco, G ;
van Duijn, CM ;
Oostra, BA ;
Heutink, P .
SCIENCE, 2003, 299 (5604) :256-259