Equilibrium problems with lower and upper bounds

被引:26
作者
Chadli, O [1 ]
Chiang, Y [1 ]
Yao, JC [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
关键词
equilibrium problem; fixed-point theorem; Ky Fan Lemma;
D O I
10.1016/S0893-9659(01)00139-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain some existence results of equilibrium problems with lower and upper bounds by employing a fixed-point theorem due to Ansari and Yao [1] and Ky Fan Lemma [2], respectively. Our results give answers to the open problem raised by Isac, Sehgal and Singh [3]. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:327 / 331
页数:5
相关论文
共 20 条
[1]  
[Anonymous], 1999, INDIAN J MATH
[2]  
[Anonymous], 1984, ANAL NONLINEAIRE SES
[3]   A fixed point theorem and its applications to a system of variational inequalities [J].
Ansari, QH ;
Yao, JC .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1999, 59 (03) :433-442
[4]   The existence of nonlinear inequalities [J].
Ansari, QH ;
Wong, NC ;
Yao, JC .
APPLIED MATHEMATICS LETTERS, 1999, 12 (05) :89-92
[5]  
ANTIPIN AS, 1995, COMP MATH MATH PHYS+, V35, P539
[6]   Generalized monotone bifunctions and equilibrium problems [J].
Bianchi, M ;
Schaible, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 90 (01) :31-43
[7]  
Blum E., 1994, MATH STUDENT, V63, P127
[8]  
BOURBAKI N, 1996, ESPACES VECTORIELS T
[9]  
Bourbaki N., ESPACES VECTORIELS T
[10]  
Brezis, 1972, B UNIONE MAT ITAL, V6, P293