Human biliverdin reductase is a leucine zipper-like DNA-binding protein and functions in transcriptional activation of heme oxygenase-1 by oxidative stress

被引:96
作者
Ahmad, Z [1 ]
Salim, M [1 ]
Maines, MD [1 ]
机构
[1] Univ Rochester, Med Ctr, Dept Biochem Biophys, Sch Med & Dent, Rochester, NY 14642 USA
关键词
D O I
10.1074/jbc.M108239200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human biliverdin reductase (hBVR) is a serine/threonine kinase that catalyzes reduction of the heme oxygenase (HO) activity product, biliverdin, to bilirubin. A domain of biliverdin reductase (BVR) has primary structural features that resemble leucine zipper proteins. A heptad repeat of five leucines (L-1-L-5), a basic domain, and a conserved alanine characterize the domain. In hBVR, a lysine replaces L-3. The secondary structure model of hBVR predicts an alpha-helix-turn-beta-sheet for this domain. hBVR translated by the rabbit reticulocyte lysate system appears on a nondenaturing gel as a single band with molecular mass of similar to69 kDa. The protein on a denaturing gel separates into two anti-hBVR immunoreactive proteins of similar to39.9 + 34.6 kDa. The dimeric form, but not purified hBVR, binds to a 100-mer DNA fragment corresponding to the mouse HO-1 (hsp32) promoter region encompassing two activator protein (AP-1) sites. The specificity of DNA binding is suggested by the following: (a) hBVR does not bind to the same DNA fragment with one or zero AP-1 sites; (b) a 56-bp random DNA with one AP-1 site does not form a complex with hBVR; (c) in vitro translated HO-1 does not interact with the 100-mer DNA fragment with two AP-1 sites; (d) mutation of Lys(143), Leu(150), or Leu(157) blocks both the formation of the similar to69-kDa specimens and hBVR DNA complex formation; and (e) purified preparations of hBVR or hHO-1 do not bind to DNA with two AP-1 sites. The potential significance of the AP-1 binding is suggested by the finding that the response of HO-1, in COS cells stably transfected with antisense hBVR, with 66% reduced BVR activity, to superoxide anion (O-2(.)) formed by menadione is attenuated, whereas induction by heme is not affected. We propose a role for BVR in the signaling cascade for AP-1 complex activation necessary for HO-1 oxidative stress response.
引用
收藏
页码:9226 / 9232
页数:7
相关论文
共 53 条
[1]   Role of Arg-166 in yeast cytochrome c1 [J].
Ahmad, Z ;
Sherman, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (21) :18450-18456
[2]  
ALAM J, 1994, J BIOL CHEM, V269, P1001
[3]  
ALAM J, 1992, J BIOL CHEM, V267, P21894
[4]   THE ROLE OF JUN, FOS AND THE AP-1 COMPLEX IN CELL-PROLIFERATION AND TRANSFORMATION [J].
ANGEL, P ;
KARIN, M .
BIOCHIMICA ET BIOPHYSICA ACTA, 1991, 1072 (2-3) :129-157
[5]   HUMAN PROTOONCOGENE C-JUN ENCODES A DNA-BINDING PROTEIN WITH STRUCTURAL AND FUNCTIONAL-PROPERTIES OF TRANSCRIPTION FACTOR AP-1 [J].
BOHMANN, D ;
BOS, TJ ;
ADMON, A ;
NISHIMURA, T ;
VOGT, PK ;
TJIAN, R .
SCIENCE, 1987, 238 (4832) :1386-1392
[6]   DIMERS, LEUCINE ZIPPERS AND DNA-BINDING DOMAINS [J].
BUSCH, SJ ;
SASSONECORSI, P .
TRENDS IN GENETICS, 1990, 6 (02) :36-40
[7]   NONCHROMOSOMAL ANTIBIOTIC RESISTANCE IN BACTERIA - GENETIC TRANSFORMATION OF ESCHERICHIA-COLI BY R-FACTOR DNA [J].
COHEN, SN ;
CHANG, ACY ;
HSU, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1972, 69 (08) :2110-&
[8]   RAPID AND PREFERENTIAL ACTIVATION OF THE C-JUN GENE DURING THE MAMMALIAN UV RESPONSE [J].
DEVARY, Y ;
GOTTLIEB, RA ;
LAU, LF ;
KARIN, M .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (05) :2804-2811
[9]   THE MAMMALIAN ULTRAVIOLET RESPONSE IS TRIGGERED BY ACTIVATION OF SRC TYROSINE KINASES [J].
DEVARY, Y ;
GOTTLIEB, RA ;
SMEAL, T ;
KARIN, M .
CELL, 1992, 71 (07) :1081-1091
[10]   RAPID INDUCTION OF HEME OXYGENASE-1 MESSENGER-RNA AND PROTEIN BY HYPERTHERMIA IN RAT-BRAIN - HEME OXYGENASE-2 IS NOT A HEAT-SHOCK PROTEIN [J].
EWING, JF ;
MAINES, MD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (12) :5364-5368