Telomerase deficiency impairs differentiation of mesenchymal stem cells

被引:107
作者
Liu, L
DiGirolamo, CM
Navarro, PAAS
Blasco, MA
Keefe, DL
机构
[1] Brown Univ, Women & Infants Hosp, Sch Med, Dept Obstet & Gynecol, Providence, RI 02905 USA
[2] Marine Biol Lab, Lab Reprod Med, Woods Hole, MA 02543 USA
[3] Natl Biotechnol Ctr, Dept Immunol & Oncol, E-28049 Madrid, Spain
关键词
mesenchymal stem cells; MSCs; differentiation; telomerase; telomere; mice;
D O I
10.1016/j.yexcr.2003.10.031
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Expression of telomerase activity presumably is involved in maintaining self-replication and the undifferentiated state of stem cells. Adult mouse bone marrow mesenchymal stem cells (mMSCs) are multipotential cells capable of differentiating into a variety of lineage cell types, including adipocytes and chondrocytes. Here we show that the lacking telomerase of mMSC lose multipotency and the capacity to differentiate. Primary cultures of mMSCs were obtained from both telomerase knockout (mTR(-/-)) and wild-type (WT) mice. The MSCs isolated from mTR(-/-) mice failed to differentiate into adipocytes and chondrocytes, even at early passages, whereas WT MSCs were capable of differentiation. Consistent with other cell types, late passages mTR(-/-)MSCs underwent senescence and were accompanied by telomere loss and chromosomal end-to-end fusions. These results suggest that in addition to its known role in cell replication, telomerase is required for differentiation of mMSCs in vitro. This work may be significant for further potentiating adult stem cells for use in tissue engineering and gene therapy and for understanding the significance of telomerase expression in the process of cell differentiation. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 47 条
[1]   mTert expression correlates with telomerase activity during the differentiation of murine embryonic stem cells [J].
Armstrong, L ;
Lako, M ;
Lincoln, J ;
Cairns, PM ;
Hole, N .
MECHANISMS OF DEVELOPMENT, 2000, 97 (1-2) :109-116
[2]   Marrow stromal stem cells [J].
Bianco, P ;
Robey, PG .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 105 (12) :1663-1668
[3]   Telomere states and cell fates [J].
Blackburn, EH .
NATURE, 2000, 408 (6808) :53-56
[4]   Telomere shortening and tumor formation by mouse cells lacking telomerase RNA [J].
Blasco, MA ;
Lee, HW ;
Hande, MP ;
Samper, E ;
Lansdorp, PM ;
DePinho, RA ;
Greider, CW .
CELL, 1997, 91 (01) :25-34
[5]   Extension of life-span by introduction of telomerase into normal human cells [J].
Bodnar, AG ;
Ouellette, M ;
Frolkis, M ;
Holt, SE ;
Chiu, CP ;
Morin, GB ;
Harley, CB ;
Shay, JW ;
Lichtsteiner, S ;
Wright, WE .
SCIENCE, 1998, 279 (5349) :349-352
[6]   Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow [J].
Campagnoli, C ;
Roberts, IAG ;
Kumar, S ;
Bennett, PR ;
Bellantuono, I ;
Fisk, NM .
BLOOD, 2001, 98 (08) :2396-2402
[7]   Cellular senescence as a tumor-suppressor mechanism [J].
Campisi, J .
TRENDS IN CELL BIOLOGY, 2001, 11 (11) :S27-S31
[8]   MESENCHYMAL STEM-CELLS [J].
CAPLAN, AI .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1991, 9 (05) :641-650
[9]   Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow [J].
Chiu, CP ;
Dragowska, W ;
Kim, NW ;
Vaziri, H ;
Yui, J ;
Thomas, TE ;
Harley, CB ;
Lansdorp, PM .
STEM CELLS, 1996, 14 (02) :239-248
[10]   Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow [J].
Colter, DC ;
Class, R ;
DiGirolamo, CM ;
Prockop, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3213-3218