Brain-computer interface technologies: from signal to action

被引:170
作者
Ortiz-Rosario, Alexis [1 ]
Adeli, Hojjat [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Ohio State Univ, Dept Biomed Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
[3] Ohio State Univ, Dept Civil & Environm Engn & Geodet Sci, Columbus, OH 43210 USA
[4] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[5] Ohio State Univ, Dept Neurol Surg, Columbus, OH 43210 USA
[6] Ohio State Univ, Dept Neurosci, Columbus, OH 43210 USA
关键词
BCI; brain-computer interface; EEG; electroencephalogram; Fourier transform; Laplacian filter; signal processing; wavelet transform; EEG-BASED DIAGNOSIS; WAVELET-CHAOS METHODOLOGY; FUNCTION NEURAL-NETWORK; ELECTRICAL-STIMULATION; SENSORIMOTOR RHYTHMS; ACTUATED WHEELCHAIR; FEATURE-EXTRACTION; MACHINE INTERFACE; MENTAL PROSTHESIS; MOTION-ONSET;
D O I
10.1515/revneuro-2013-0032
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Here, we present a state-of-the-art review of the research performed on the brain-computer interface (BCI) technologies with a focus on signal processing approaches. BCI can be divided into three main components: signal acquisition, signal processing, and effector device. The signal acquisition component is generally divided into two categories: noninvasive and invasive. For noninvasive, this review focuses on electroencephalogram. For the invasive, the review includes electrocorticography, local field potentials, multiple-unit activity, and single-unit action potentials. Signal processing techniques reviewed are divided into time-frequency methods such as Fourier transform, autoregressive models, wavelets, and Kalman filter and spatiotemporal techniques such as Laplacian filter and common spatial patterns. Additionally, various signal feature classification algorithms are discussed such as linear discriminant analysis, support vector machines, artificial neural networks, and Bayesian classifiers. The article ends with a discussion of challenges facing BCI and concluding remarks on the future of the technology.
引用
收藏
页码:537 / 552
页数:16
相关论文
共 171 条
[51]   Autocalibration and Recurrent Adaptation: Towards a Plug and Play Online ERD-BCI [J].
Faller, Josef ;
Vidaurre, Carmen ;
Solis-Escalante, Teodoro ;
Neuper, Christa ;
Scherer, Reinhold .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2012, 20 (03) :313-319
[52]   TALKING OFF THE TOP OF YOUR HEAD - TOWARD A MENTAL PROSTHESIS UTILIZING EVENT-RELATED BRAIN POTENTIALS [J].
FARWELL, LA ;
DONCHIN, E .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1988, 70 (06) :510-523
[53]   Volitional control of neural activity: implications for brain-computer interfaces [J].
Fetz, Eberhard E. .
JOURNAL OF PHYSIOLOGY-LONDON, 2007, 579 (03) :571-579
[54]  
Ficke R.C., 1992, Digest of data on persons with disabilities
[55]   The MindGame: A P300-based brain-computer interface game [J].
Finke, Andrea ;
Lenhardt, Alexander ;
Ritter, Helge .
NEURAL NETWORKS, 2009, 22 (09) :1329-1333
[56]   Recurrent neural networks for fuzzy data [J].
Freitag, Steffen ;
Graf, Wolfgang ;
Kaliske, Michael .
INTEGRATED COMPUTER-AIDED ENGINEERING, 2011, 18 (03) :265-280
[57]   A new (semantic) reflexive brain-computer interface: In search for a suitable classifier [J].
Furdea, A. ;
Ruf, C. A. ;
Halder, S. ;
De Massari, D. ;
Bogdan, M. ;
Rosenstiel, W. ;
Matuz, T. ;
Birbaumer, N. .
JOURNAL OF NEUROSCIENCE METHODS, 2012, 203 (01) :233-240
[58]   Naive coadaptive cortical control [J].
Gage, Gregory J. ;
Ludwig, Kip A. ;
Otto, Kevin J. ;
Ionides, Edward L. ;
Kipke, Daryl R. .
JOURNAL OF NEURAL ENGINEERING, 2005, 2 (02) :52-63
[59]   A brain-actuated wheelchair:: Asynchronous and non-invasive Brain-computer interfaces for continuous control of robots [J].
Galan, F. ;
Nuttin, M. ;
Lew, E. ;
Ferrez, P. W. ;
Vanacker, G. ;
Philips, J. ;
Millan, J. del R. .
CLINICAL NEUROPHYSIOLOGY, 2008, 119 (09) :2159-2169
[60]  
Gancet J, 2012, P IEEE RAS-EMBS INT, P1794, DOI 10.1109/BioRob.2012.6290688