Benfotiamine accelerates the healing of ischaemic diabetic limbs in mice through protein kinase B/Akt-mediated potentiation of angiogenesis and inhibition of apoptosis

被引:76
作者
Gadau, S
Emanueli, C
Van Linthout, S
Graiani, G
Todaro, M
Meloni, M
Campesi, I
Invernici, G
Spillmann, F
Ward, K
Madeddu, P [1 ]
机构
[1] Univ Bristol, Bristol Heart Inst, Bristol BS2 8HW, Avon, England
[2] Natl Inst Biostruct & Biosyst, Osilo, Italy
[3] Natl Inst Biostruct & Biosyst, Alghero, Italy
[4] Univ Palermo, Cellular & Mol Pathophysiol Lab, Palermo, Italy
[5] Ist Neurochirurg C Besta, I-20133 Milan, Italy
[6] Multimed Res Inst, Milan, Italy
关键词
advanced glycation end-products; AGEs; angiogenesis; apoptosis; benfotiamine; caspase; diabetes; endothelial progenitor cells; ischaemia; vitamin B1;
D O I
10.1007/s00125-005-0103-5
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims/hypothesis: Benfotiamine, a vitamin B1 analogue, reportedly prevents diabetic microangiopathy. The aim of this study was to evaluate whether benfotiamine is of benefit in reparative neovascularisation using a type I diabetes model of hindlimb ischaemia. We also investigated the involvement of protein kinase B (PKB)/Akt in the therapeutic effects of benfotiamine. Methods: Streptozotocin-induced diabetic mice, given oral benfotiamine or vehicle, were subjected to unilateral limb ischaemia. Reparative neovascularisation was analysed by histology. The expression of Nos3 and Casp3 was evaluated by real-time PCR, and the activation state of PKB/Akt was assessed by western blot analysis and immunohistochemistry. The functional importance of PKB/Akt in benfotiamine-induced effects was investigated using a dominant-negative construct. Results: Diabetic muscles showed reduced transketolase activity, which was corrected by benfotiamine. Importantly, benfotiamine prevented ischaemia-induced toe necrosis, improved hindlimb perfusion and oxygenation, and restored endothelium-dependent vasodilation. Histological studies revealed the improvement of reparative neovascularisation and the inhibition of endothelial and skeletal muscle cell apoptosis. In addition, benfotiamine prevented the vascular accumulation of advanced glycation end products and the induction of pro-apoptotic caspase-3, while restoring proper expression of Nos3 and Akt in ischaemic muscles. The benefits of benfotiamine were nullified by dominant-negative PKB/Akt. In vitro, benfotiamine stimulated the proliferation of human EPCs, while inhibiting apoptosis induced by high glucose. In diabetic mice, the number of circulating EPCs was reduced, with the deficit being corrected by benfotiamine. Conclusions/ interpretation: We have demonstrated, for the first time, that benfotiamine aids the post-ischaemic healing of diabetic animals via PKB/Akt-mediated potentiation of angiogenesis and inhibition of apoptosis. In addition, benfotiamine combats the diabetes-induced deficit in endothelial progenitor cells.
引用
收藏
页码:405 / 420
页数:16
相关论文
共 52 条
[1]   Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine [J].
Babaei-Jadidi, R ;
Karachalias, N ;
Ahmed, N ;
Battah, S ;
Thornalley, PJ .
DIABETES, 2003, 52 (08) :2110-2120
[2]   Biochemistry and molecular cell biology of diabetic complications [J].
Brownlee, M .
NATURE, 2001, 414 (6865) :813-820
[3]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[4]   Augmented BH4 by gene transfer restores nitric oxide synthase function in hyperglycemic human endothelial cells [J].
Cai, SJ ;
Khoo, J ;
Channon, KM .
CARDIOVASCULAR RESEARCH, 2005, 65 (04) :823-831
[5]   A stable reagent mixture for the whole blood transketolase assay [J].
Chamberlain, BR ;
Buttery, JE ;
Pannall, PR .
ANNALS OF CLINICAL BIOCHEMISTRY, 1996, 33 :352-354
[6]   Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice [J].
Condorelli, G ;
Drusco, A ;
Stassi, G ;
Bellacosa, A ;
Roncarati, R ;
Iaccarino, G ;
Russo, MA ;
Gu, YS ;
Dalton, N ;
Chung, C ;
Latronico, MVG ;
Napoli, C ;
Sadoshima, J ;
Croce, CM ;
Ross, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (19) :12333-12338
[7]   The epidemiology and cost of inpatient care for peripheral vascular disease, infection, neuropathy, and ulceration in diabetes [J].
Currie, CJ ;
Morgan, CL ;
Peters, JR .
DIABETES CARE, 1998, 21 (01) :42-48
[8]   Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation [J].
Dimmeler, S ;
Fleming, I ;
Fisslthaler, B ;
Hermann, C ;
Busse, R ;
Zeiher, AM .
NATURE, 1999, 399 (6736) :601-605
[9]   HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway [J].
Dimmeler, S ;
Aicher, A ;
Vasa, M ;
Mildner-Rihm, C ;
Adler, K ;
Tiemann, M ;
Rütten, H ;
Fichtlscherer, S ;
Martin, H ;
Zeiher, AM .
JOURNAL OF CLINICAL INVESTIGATION, 2001, 108 (03) :391-397
[10]   Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site [J].
Du, XL ;
Edelstein, D ;
Dimmeler, S ;
Ju, QD ;
Sui, C ;
Brownlee, M .
JOURNAL OF CLINICAL INVESTIGATION, 2001, 108 (09) :1341-1348