On the existence of multiple solutions of nonhomogeneous elliptic equations involving critical Sobolev exponents

被引:24
作者
Cao, DM
Zhou, HS
机构
[1] Young Scientist Lab. of Math. Phys., Wuhan Inst. of Mathematical Sciences, Academia Sinica, Wuhan 430071
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 1996年 / 47卷 / 01期
关键词
D O I
10.1007/BF00917575
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p = 2N/(N - 2), N greater than or equal to 3 be the limiting Sobolev exponent and Omega is an element of a bounded smooth domain. We show that for h is an element of H-1 (Omega), f satisfies some conditions then -Delta u = c(1)u(p-1) f(x,u) + h admits at least two positive solutions.
引用
收藏
页码:89 / 96
页数:8
相关论文
共 6 条
[1]   A NOTE ON THE PROBLEM -DELTA-U=+U/U/2-STAR-2 [J].
AMBROSETTI, A ;
STRUWE, M .
MANUSCRIPTA MATHEMATICA, 1986, 54 (04) :373-379
[2]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[3]  
EAGLE JG, 1989, J MATH ANAL APPL, V137, P122
[4]  
Gilbarg D., 1985, ELLIPTIC PARTIAL DIF, V2nd
[5]   ON NONHOMOGENEOUS ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT [J].
TARANTELLO, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (03) :281-304
[6]   EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS OF INHOMOGENEOUS SEMILINEAR ELLIPTIC PROBLEMS IN UNBOUNDED-DOMAINS [J].
ZHU, XP ;
ZHOU, HS .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 115 :301-318