On tractable approximations of uncertain linear matrix inequalities affected by interval uncertainty

被引:112
作者
Ben-Tal, A [1 ]
Nemirovski, A [1 ]
机构
[1] Technion Israel Inst Technol, Fac Ind Engn & Management, IL-32000 Haifa, Israel
关键词
robust semidefinite optimization; data uncertainty; Lyapunov stability synthesis; relaxations of combinatorial problems;
D O I
10.1137/S1052623400374756
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present efficiently verifiable sufficient conditions for the validity of specific NP-hard semi-infinite systems of linear matrix inequalities (LMIs) arising from LMIs with uncertain data and demonstrate that these conditions are tight up to an absolute constant factor. In particular, we prove that given an n x n interval matrix U-rho = {A \ \A(ij)-A*(ij)\ less than or equal to rhoC(ij)}, one can build a computable lower bound, accurate within the factor pi/2, on the supremum of those rho for which all instances of U-rho share a common quadratic Lyapunov function. We then obtain a similar result for the problem of quadratic Lyapunov stability synthesis. Finally, we apply our techniques to the problem of maximizing a homogeneous polynomial of degree 3 over the unit cube.
引用
收藏
页码:811 / 833
页数:23
相关论文
共 12 条
[1]  
[Anonymous], 1994, SIAM STUD APPL MATH
[2]  
[Anonymous], OPTIM METHODS SOFTW
[3]   Robust convex optimization [J].
Ben-Tal, A ;
Nemirovski, A .
MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (04) :769-805
[4]   Robust truss topology design via semidefinite programming [J].
Ben-Tal, A ;
Nemirovski, A .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (04) :991-1016
[5]  
Ben-Tal A., 2000, HDB SEMIDEFINITE PRO, P139
[6]  
Boyd S., 1994, SIAM STUD APPL MATH, V15
[7]   H infinity design with pole placement constraints: An LMI approach [J].
Chilali, M ;
Gahinet, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (03) :358-367
[8]   Robust solutions to uncertain semidefinite programs [J].
El Ghaoui, L ;
Oustry, F ;
Lebret, H .
SIAM JOURNAL ON OPTIMIZATION, 1998, 9 (01) :33-52
[9]   Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming [J].
Goemans, MX ;
Williamson, DP .
JOURNAL OF THE ACM, 1995, 42 (06) :1115-1145
[10]  
Grotschel M., 1988, ELLIPSOID METHOD COM