The ozone hole indirect effect: Cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the Southern Hemisphere

被引:56
作者
Grise, Kevin M. [1 ]
Polvani, Lorenzo M. [1 ,2 ,3 ]
Tselioudis, George [2 ,3 ,4 ]
Wu, Yutian [5 ]
Zelinka, Mark D. [6 ]
机构
[1] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
[2] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
[3] Columbia Univ, Dept Earth & Environm Sci, New York, NY USA
[4] NASA, Goddard Inst Space Studies, New York, NY 10025 USA
[5] NYU, Courant Inst Math Sci, Ctr Atmosphere Ocean Sci, New York, NY USA
[6] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA
基金
美国国家科学基金会;
关键词
ozone hole; cloud-radiative processes; CLIMATE;
D O I
10.1002/grl.50675
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This study quantifies the response of the clouds and the radiative budget of the Southern Hemisphere (SH) to the poleward shift in the tropospheric circulation induced by the development of the Antarctic ozone hole. Single forcing climate model integrations, in which only stratospheric ozone depletion is specified, indicate that (1) high-level and midlevel clouds closely follow the poleward shift in the SH midlatitude jet and that (2) low-level clouds decrease across most of the Southern Ocean. Similar cloud anomalies are found in satellite observations during periods when the jet is anomalously poleward. The hemispheric annual mean radiation response to the cloud anomalies is calculated to be approximately +0.25 W m(-2), arising largely from the reduction of the total cloud fraction at SH midlatitudes during austral summer. While these dynamically induced cloud and radiation anomalies are considerable and are supported by observational evidence, quantitative uncertainties remain from model biases in mean-state cloud-radiative processes.
引用
收藏
页码:3688 / 3692
页数:5
相关论文
共 18 条
  • [11] Stratospheric Ozone Depletion: The Main Driver of Twentieth-Century Atmospheric Circulation Changes in the Southern Hemisphere
    Polvani, Lorenzo M.
    Waugh, Darryn W.
    Correa, Gustavo J. P.
    Son, Seok-Woo
    [J]. JOURNAL OF CLIMATE, 2011, 24 (03) : 795 - 812
  • [12] Rossow WB, 1999, B AM METEOROL SOC, V80, P2261, DOI 10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO
  • [13] 2
  • [14] Thompson DWJ, 2011, NAT GEOSCI, V4, P741, DOI [10.1038/NGEO1296, 10.1038/ngeo1296]
  • [15] Climate feedback implied by observed radiation and precipitation changes with midlatitude storm strength and frequency
    Tselioudis, G
    Rossow, WB
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (02)
  • [16] Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: a multi-model study
    Tsushima, Yoko
    Emori, S.
    Ogura, T.
    Kimoto, M.
    Webb, M. J.
    Williams, K. D.
    Ringer, M. A.
    Soden, B. J.
    Li, B.
    Andronova, N.
    [J]. CLIMATE DYNAMICS, 2006, 27 (2-3) : 113 - 126
  • [17] The Importance of the Montreal Protocol in Protecting Earth's Hydroclimate
    Wu, Yutian
    Polvani, Lorenzo M.
    Seager, Richard
    [J]. JOURNAL OF CLIMATE, 2013, 26 (12) : 4049 - 4068
  • [18] Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels
    Zelinka, Mark D.
    Klein, Stephen A.
    Hartmann, Dennis L.
    [J]. JOURNAL OF CLIMATE, 2012, 25 (11) : 3715 - 3735