共 27 条
Heat-Resistant Sustained-Release Fragrance Microcapsules
被引:38
作者:
Li, Yan
[1
,2
]
Huang, Yi-Qing
[1
,2
]
Fan, Heng-Feng
[1
,2
]
Xia, Qiang
[1
,2
,3
]
机构:
[1] Southeast Univ, Sch Biol Sci & Med Engn, State Key Lab Bioelect, Nanjing 210096, Jiangsu, Peoples R China
[2] Suzhou Key Lab Biomed Mat & Technol, Suzhou 215123, Peoples R China
[3] Suzhou Nanohlth Biotech Ltd Corp, Suzhou 215123, Peoples R China
关键词:
applications;
biocompatibility;
microscopy;
properties and characterization;
thermal properties;
DRUG-RELEASE;
DELIVERY;
OIL;
D O I:
10.1002/app.40053
中图分类号:
O63 [高分子化学(高聚物)];
学科分类号:
070305 ;
080501 ;
081704 ;
摘要:
In this study, fragrance microcapsules were prepared by a spray-drying method, in which the osmanthus flower fragrance acted as the core material and gum arabic and maltodextrin acted as shell materials. Scanning electron microscopy images showed that the microcapsules were approximately spherical in shape with a concave surface. Fourier transform infrared spectroscopy was used to prove the formations of the microcapsules. The fragrance retention rate at high temperatures (80-120 degrees C) after a short heating time (30 min) reached 85.20 +/- 2.72% and the retention rate after a long heating time (a week) at 60 degrees C reached 95.40 +/- 2.88%. The retention rate after 100 days exceeded 90%, and the transdermal release experiments showed that on the surface of the skin, the fragrance in the microcapsules stayed longer than in the pure fragrance oil. These results indicate that the fragrance microcapsules had an excellent aroma-reserving ability. The results of the release test proved that the transport mechanism of the fragrance microcapsules conformed to the Weibull equation. (c) 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40053.
引用
收藏
页数:7
相关论文