Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions

被引:164
作者
Mark, GL [1 ]
Dow, JM [1 ]
Kiely, PD [1 ]
Higgins, H [1 ]
Haynes, J [1 ]
Baysse, C [1 ]
Abbas, A [1 ]
Foley, T [1 ]
Franks, A [1 ]
Morrissey, J [1 ]
O'Gara, F [1 ]
机构
[1] Natl Univ Ireland Univ Coll Cork, Dept Microbiol, Biomerit Res Ctr, Cork, Ireland
关键词
Pseudomonas; rhizosphere colonization;
D O I
10.1073/pnas.0506407102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Molecules exuded by plant roots are thought to act as signals to influence the ability of microbial strains to colonize the roots and to survive in the rhizosphere. Differential bacterial responses to signals from different plant species may mediate the selection of specific rhizosphere populations. Very little, however, is known about the effects of plant exudates on patterns of bacterial gene expression. Here, we have tested the concept that plant root exudates modulate expression of bacterial genes involved in establishing microbe-plant interactions. We have examined the influence on the Pseudomonas aeruginosa PA01 transcriptome of exudates from two varieties of sugarbeet that select for genetically distinct pseudomonad populations in the rhizosphere. The response to the two exudates showed only a partial overlap; the majority of those genes with altered expression was regulated in response to only one of the two exudates. Genes with altered expression included those with functions previously implicated in microbe-plant interactions, such as aspects of metabolism, chemotaxis and type III secretion, and a subset with putative or unknown function. Use of a panel of mutants with targeted disruptions allowed us to identify previously uncharacterized genes with roles in the competitive ability of P. aeruginosa in the rhizosphere within this subset. No genes with host-specific effects were identified. Homologues of the genes identified occur in the genomes of both beneficial and pathogenic root-associated bacteria, suggesting that this strategy may help to elucidate molecular interactions that are important for biocontrol, plant growth promotion, and plant pathogenesis.
引用
收藏
页码:17454 / 17459
页数:6
相关论文
共 38 条
[1]   Transcriptome analysis of Sinorhizobium meliloti during symbiosis -: art. no. R15 [J].
Ampe, F ;
Kiss, E ;
Sabourdy, F ;
Batut, J .
GENOME BIOLOGY, 2003, 4 (02)
[2]  
Anjaiah V, 2003, CAN J MICROBIOL, V49, P85, DOI [10.1139/w03-011, 10.1139/W03-011]
[3]   RETRACTED: Mediation of pathogen resistance by exudation of antimicrobials from roots (Retracted Article) [J].
Bais, HP ;
Prithiviraj, B ;
Jha, AK ;
Ausubel, FM ;
Vivanco, JM .
NATURE, 2005, 434 (7030) :217-221
[4]   A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote-host interaction [J].
Barnett, MJ ;
Tolman, CJ ;
Fisher, RF ;
Long, SR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (47) :16636-16641
[5]   Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions [J].
Becker, A ;
Bergès, H ;
Krol, E ;
Bruand, C ;
Rüberg, S ;
Capela, D ;
Lauber, E ;
Meilhoc, E ;
Ampe, F ;
de Bruijn, FJ ;
Fourment, J ;
Francez-Charlot, A ;
Kahn, D ;
Küster, H ;
Liebe, C ;
Pühler, A ;
Weidner, S ;
Batut, J .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2004, 17 (03) :292-303
[6]   Green fluorescent protein as a marker for Pseudomonas spp. [J].
Bloemberg, GV ;
OToole, GA ;
Lugtenberg, BJJ ;
Kolter, R .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (11) :4543-4551
[7]   Minimum information about a microarray experiment (MIAME) - toward standards for microarray data [J].
Brazma, A ;
Hingamp, P ;
Quackenbush, J ;
Sherlock, G ;
Spellman, P ;
Stoeckert, C ;
Aach, J ;
Ansorge, W ;
Ball, CA ;
Causton, HC ;
Gaasterland, T ;
Glenisson, P ;
Holstege, FCP ;
Kim, IF ;
Markowitz, V ;
Matese, JC ;
Parkinson, H ;
Robinson, A ;
Sarkans, U ;
Schulze-Kremer, S ;
Stewart, J ;
Taylor, R ;
Vilo, J ;
Vingron, M .
NATURE GENETICS, 2001, 29 (04) :365-371
[8]   Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot [J].
Chin-A-Woeng, TFC ;
Bloemberg, GV ;
Mulders, IHM ;
Dekkers, LC ;
Lugtenberg, BJJ .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2000, 13 (12) :1340-1345
[9]   Evaluation of root exudates of seven sorghum accessions [J].
Czarnota, MA ;
Rimando, AM ;
Weston, LA .
JOURNAL OF CHEMICAL ECOLOGY, 2003, 29 (09) :2073-2083
[10]   Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f. sp radicis-lycopersici by Pseudomonas fluorescens WCS365 [J].
de Weert, S ;
Kuiper, I ;
Lagendijk, EL ;
Lamers, GEM ;
Lugtenberg, BJJ .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2004, 17 (11) :1185-1191