Cure for unstable numerical evolutions of single black holes: Adjusting the standard ADM equations in the spherically symmetric case

被引:23
作者
Kelly, B [1 ]
Laguna, P [1 ]
Lockitch, K [1 ]
Pullin, J [1 ]
Schnetter, E [1 ]
Shoemaker, D [1 ]
Tiglio, M [1 ]
机构
[1] Penn State Univ, Ctr Gravitat Phys & Geometry, University Pk, PA 16802 USA
来源
PHYSICAL REVIEW D | 2001年 / 64卷 / 08期
关键词
D O I
10.1103/PhysRevD.64.084013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Numerical codes based on a direct implementation of the standard Arnowitt-Deser-Misner (ADM) formulation of Einstein's equations have generally failed to provide long-term stable and convergent evolutions of black hole space-times when excision is used to remove the singularities. We show that, for the case of a single black hole in spherical symmetry, it is possible to circumvent these problems by adding terms involving the constraints to the evolution equations, thus adjusting the standard ADM system. We investigate the effect that the choice of the lapse and shift has on the stability properties of numerical simulations and thus on the form of the added constraint term. To facilitate this task, we introduce the concept of quasi-well-posedness, a version of well-posedness suitable for ADM-like systems involving second-order spatial derivatives.
引用
收藏
页数:14
相关论文
共 34 条
[1]   Simple excision of a black hole in 3+1 numerical relativity -: art. no. 104006 [J].
Alcubierre, M ;
Brügmann, B .
PHYSICAL REVIEW D, 2001, 63 (10)
[2]   Towards an understanding of the stability properties of the 3+1 evolution equations in general relativity -: art. no. 124011 [J].
Alcubierre, M ;
Allen, G ;
Brügmann, B ;
Seidel, E ;
Suen, WM .
PHYSICAL REVIEW D, 2000, 62 (12) :1-15
[3]   Towards a stable numerical evolution of strongly gravitating systems in general relativity:: The conformal treatments -: art. no. 044034 [J].
Alcubierre, M ;
Brügmann, B ;
Dramlitsch, T ;
Font, JA ;
Papadopoulos, P ;
Seidel, E ;
Stergioulas, N ;
Takahashi, R .
PHYSICAL REVIEW D, 2000, 62 (04) :1-16
[4]   Fixing Einstein's equations [J].
Anderson, A ;
York, JW .
PHYSICAL REVIEW LETTERS, 1999, 82 (22) :4384-4387
[5]  
Arnowitt R, 1962, Gravitation: An Introduction to Current Research, P227
[6]   Numerical integration of Einstein's field equations [J].
Baumgarte, TW ;
Shapiro, SL .
PHYSICAL REVIEW D, 1999, 59 (02)
[7]   Evolving Einstein's field equations with matter: The "hydro without hydro" test [J].
Baumgarte, TW ;
Hughes, SA ;
Shapiro, SL .
PHYSICAL REVIEW D, 1999, 60 (08)
[8]   First order hyperbolic formalism for numerical relativity [J].
Bona, C ;
Masso, J ;
Seidel, E ;
Stela, J .
PHYSICAL REVIEW D, 1997, 56 (06) :3405-3415
[9]   Einstein's equations with asymptotically stable constraint propagation [J].
Brodbeck, O ;
Frittelli, S ;
Reula, OA .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (02) :909-923
[10]  
CHOQUETBRUHAT Y, 1995, CR ACAD SCI I-MATH, V321, P1089