Fixing Einstein's equations

被引:88
作者
Anderson, A [1 ]
York, JW [1 ]
机构
[1] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA
关键词
D O I
10.1103/PhysRevLett.82.4384
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Einstein's equations are not a well-posed system of evolution equations for the spatial metric, except in special coordinates. A remarkable first-order symmetrizable hyperbolic formulation is Found that is surprisingly close to Einstein's original equations yet does not require such coordinates. This system has only physical characteristic directions, the light cone and the normal to the spacelike foliation, and serves to unify all the physical hyperbolic formulations. [S0031-9007(99)09273-X].
引用
收藏
页码:4384 / 4387
页数:4
相关论文
共 28 条
[1]  
Abrahams A, 1996, CR ACAD SCI II B, V323, P835
[2]   Geometrical hyperbolic systems for general relativity and gauge theories [J].
Abrahams, A ;
Anderson, A ;
Choquet-Bruhat, Y ;
York, JW .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (1A) :A9-A22
[3]   EINSTEIN AND YANG-MILLS THEORIES IN HYPERBOLIC FORM WITHOUT GAUGE-FIXING [J].
ABRAHAMS, A ;
ANDERSON, A ;
CHOQUETBRUHAT, Y ;
YORK, JW .
PHYSICAL REVIEW LETTERS, 1995, 75 (19) :3377-3381
[4]   Gravitational wave extraction and outer boundary conditions by perturbative matching [J].
Abrahams, AM ;
Rezzolla, L ;
Rupright, ME ;
Anderson, A ;
Anninos, P ;
Baumgarte, TW ;
Bishop, NT ;
Brandt, SR ;
Browne, JC ;
Camarda, K ;
Choptuik, MW ;
Cook, GB ;
Correll, RR ;
Evans, CR ;
Finn, LS ;
Fox, GC ;
Gomez, R ;
Haupt, T ;
Huq, MF ;
Kidder, LE ;
Klasky, SA ;
Laguna, P ;
Landry, W ;
Lehner, L ;
Lenaghan, J ;
Marsa, RL ;
Masso, J ;
Matzner, RA ;
Mitra, S ;
Papadopoulos, P ;
Parashar, M ;
Saied, F ;
Saylor, PE ;
Scheel, MA ;
Seidel, E ;
Shapiro, SL ;
Shoemaker, D ;
Smarr, L ;
Szilagyi, B ;
Teukolsky, SA ;
van Putten, MHPM ;
Walker, P ;
Winicour, J ;
York, JW .
PHYSICAL REVIEW LETTERS, 1998, 80 (09) :1812-1815
[5]   Hamiltonian time evolution for general relativity [J].
Anderson, A ;
York, JW .
PHYSICAL REVIEW LETTERS, 1998, 81 (06) :1154-1157
[6]  
Anderson A., 1997, TOPOL METH NONLIN AN, V10, P353
[7]   HYPERBOLIC EVOLUTION SYSTEM FOR NUMERICAL RELATIVITY [J].
BONA, C ;
MASSO, J .
PHYSICAL REVIEW LETTERS, 1992, 68 (08) :1097-1099
[8]   NEW FORMALISM FOR NUMERICAL RELATIVITY [J].
BONA, C ;
MASSO, J ;
SEIDEL, E ;
STELA, J .
PHYSICAL REVIEW LETTERS, 1995, 75 (04) :600-603
[9]  
Choquet-Bruhat Y., 1980, General relativity and gravitation. One hundred years after the birth of Albert Einstein, vol.1, P99
[10]   HYPERBOLICITY OF THE 3+1 SYSTEM OF EINSTEIN EQUATIONS [J].
CHOQUETBRUHAT, Y ;
RUGGERI, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 89 (02) :269-275