Multiclass cancer diagnosis using tumor gene expression signatures

被引:1418
作者
Ramaswamy, S
Tamayo, P
Rifkin, R
Mukherjee, S
Yeang, CH
Angelo, M
Ladd, C
Reich, M
Latulippe, E
Mesirov, JP
Poggio, T
Gerald, W
Loda, M
Lander, ES
Golub, TR
机构
[1] Harvard Univ, Sch Med, Dana Farber Canc Inst, Dept Adult Oncol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dana Farber Canc Inst, Dept Pediat Oncol, Boston, MA 02115 USA
[3] MIT, Whitehead Inst, Ctr Genome Res, Cambridge, MA 02138 USA
[4] Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[5] Mem Sloan Kettering Canc Ctr, Dept Pathol, New York, NY 10021 USA
[6] MIT, Dept Biol, Cambridge, MA 02139 USA
[7] MIT, McGovern Inst, Ctr Brain & Computat Learning, Cambridge, MA 02139 USA
[8] MIT, Artificial Intelligence Lab, Cambridge, MA 02139 USA
关键词
D O I
10.1073/pnas.211566398
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The optimal treatment of patients with cancer depends on establishing accurate diagnoses by using a complex combination of clinical and histopathological data. In some instances, this task is difficult or impossible because of atypical clinical presentation or histopathology. To determine whether the diagnosis of multiple common adult malignancies could be achieved purely by molecular classification, we subjected 218 tumor samples, spanning 14 common tumor types, and 90 normal tissue samples to oligonucleotide microarray gene expression analysis. The expression levels of 16,063 genes and expressed sequence tags were used to evaluate the accuracy of a multiclass classifier based on a support vector machine algorithm. Overall classification accuracy was 78%, far exceeding the accuracy of random classification (91%). Poorly differentiated cancers resulted in low-confidence predictions and could not be accurately classified according to their tissue of origin, indicating that they are molecularly distinct entities with dramatically different gene expression patterns compared with their well differentiated counterparts. Taken together, these results demonstrate the feasibility of accurate, multiclass molecular cancer classification and suggest a strategy for future clinical implementation of molecular cancer diagnostics.
引用
收藏
页码:15149 / 15154
页数:6
相关论文
共 31 条
  • [11] Regularization networks and support vector machines
    Evgeniou, T
    Pontil, M
    Poggio, T
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2000, 13 (01) : 1 - 50
  • [12] Support vector machine classification and validation of cancer tissue samples using microarray expression data
    Furey, TS
    Cristianini, N
    Duffy, N
    Bednarski, DW
    Schummer, M
    Haussler, D
    [J]. BIOINFORMATICS, 2000, 16 (10) : 906 - 914
  • [13] Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    Golub, TR
    Slonim, DK
    Tamayo, P
    Huard, C
    Gaasenbeek, M
    Mesirov, JP
    Coller, H
    Loh, ML
    Downing, JR
    Caligiuri, MA
    Bloomfield, CD
    Lander, ES
    [J]. SCIENCE, 1999, 286 (5439) : 531 - 537
  • [14] GUYON I, 2002, IN PRESS MACH LEARN
  • [15] HAINSWORTH JD, 1993, NEW ENGL J MED, V329, P257
  • [16] Gene-expression profiles in hereditary breast cancer.
    Hedenfalk, I
    Duggan, D
    Chen, YD
    Radmacher, M
    Bittner, M
    Simon, R
    Meltzer, P
    Gusterson, B
    Esteller, M
    Kallioniemi, OP
    Wilfond, B
    Borg, Å
    Trent, J
    Raffeld, M
    Yakhini, Z
    Ben-Dor, A
    Dougherty, E
    Kononen, J
    Bubendorf, L
    Fehrle, W
    Pittaluga, S
    Gruvberger, S
    Loman, N
    Johannsoson, O
    Olsson, H
    Sauter, G
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2001, 344 (08) : 539 - 548
  • [17] Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
    Khan, J
    Wei, JS
    Ringnér, M
    Saal, LH
    Ladanyi, M
    Westermann, F
    Berthold, F
    Schwab, M
    Antonescu, CR
    Peterson, C
    Meltzer, PS
    [J]. NATURE MEDICINE, 2001, 7 (06) : 673 - 679
  • [18] Lickert H, 2000, DEVELOPMENT, V127, P3805
  • [19] Molecular portraits of human breast tumours
    Perou, CM
    Sorlie, T
    Eisen, MB
    van de Rijn, M
    Jeffrey, SS
    Rees, CA
    Pollack, JR
    Ross, DT
    Johnsen, H
    Akslen, LA
    Fluge, O
    Pergamenschikov, A
    Williams, C
    Zhu, SX
    Lonning, PE
    Borresen-Dale, AL
    Brown, PO
    Botstein, D
    [J]. NATURE, 2000, 406 (6797) : 747 - 752
  • [20] RAMASWAMY S, 2001, CLIN ONCOLOGY, P711