An interior Newton method for quadratic programming

被引:12
作者
Coleman, TF [1 ]
Liu, JG
机构
[1] Cornell Univ, Dept Comp Sci, Ithaca, NY 14853 USA
[2] Cornell Univ, Ctr Appl Math, Ithaca, NY 14853 USA
关键词
nonconvex quadratic programming; interior method; Newton method; trust-region method; dogleg method; quadratic convergence;
D O I
10.1007/s101070050069
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a new (interior) approach for the general quadratic programming problem. We establish that the new method has strong convergence properties: the generated sequence converges globally to a point satisfying the second-order necessary optimality conditions, and the rate of convergence is 2-step quadratic if the limit point is a strong local minimizer. Published alternative interior approaches do not share such strong convergence properties for the nonconvex case. We also report on the results of preliminary numerical experiments: the results indicate that the proposed method has considerable practical potential.
引用
收藏
页码:491 / 523
页数:33
相关论文
共 39 条
[1]   A VARIATION ON KARMARKAR ALGORITHM FOR SOLVING LINEAR-PROGRAMMING PROBLEMS [J].
BARNES, ER .
MATHEMATICAL PROGRAMMING, 1986, 36 (02) :174-182
[2]  
BEALE EML, 1959, NAV RES LOG, V6, P227, DOI DOI 10.1002/NAV.3800060305
[3]  
BENDAYA M, 1988, J885 GEORG I TECHN S
[4]   CONTINUITY OF THE NULL SPACE BASIS AND CONSTRAINED OPTIMIZATION [J].
BYRD, RH ;
SCHNABEL, RB .
MATHEMATICAL PROGRAMMING, 1986, 35 (01) :32-41
[5]   PROJECTED GRADIENT METHODS FOR LINEARLY CONSTRAINED PROBLEMS [J].
CALAMAI, PH ;
MORE, JJ .
MATHEMATICAL PROGRAMMING, 1987, 39 (01) :93-116
[6]   An interior trust region approach for nonlinear minimization subject to bounds [J].
Coleman, TF ;
Li, YY .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (02) :418-445
[7]   A NOTE ON THE COMPUTATION OF AN ORTHONORMAL BASIS FOR THE NULL SPACE OF A MATRIX [J].
COLEMAN, TF ;
SORENSEN, DC .
MATHEMATICAL PROGRAMMING, 1984, 29 (02) :234-242
[8]   A DIRECT ACTIVE SET ALGORITHM FOR LARGE SPARSE QUADRATIC PROGRAMS WITH SIMPLE BOUNDS [J].
COLEMAN, TF ;
HULBERT, LA .
MATHEMATICAL PROGRAMMING, 1989, 45 (03) :373-406
[9]  
COLEMAN TF, 1993, 931388 CORN U COMP S
[10]  
Coleman TF., 1994, Mathematical Programming, V67, P189, DOI [DOI 10.1007/BF01582221, 10.1007/BF01582221]