An interior Newton method for quadratic programming

被引:12
作者
Coleman, TF [1 ]
Liu, JG
机构
[1] Cornell Univ, Dept Comp Sci, Ithaca, NY 14853 USA
[2] Cornell Univ, Ctr Appl Math, Ithaca, NY 14853 USA
关键词
nonconvex quadratic programming; interior method; Newton method; trust-region method; dogleg method; quadratic convergence;
D O I
10.1007/s101070050069
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a new (interior) approach for the general quadratic programming problem. We establish that the new method has strong convergence properties: the generated sequence converges globally to a point satisfying the second-order necessary optimality conditions, and the rate of convergence is 2-step quadratic if the limit point is a strong local minimizer. Published alternative interior approaches do not share such strong convergence properties for the nonconvex case. We also report on the results of preliminary numerical experiments: the results indicate that the proposed method has considerable practical potential.
引用
收藏
页码:491 / 523
页数:33
相关论文
共 39 条
[11]  
Cottle RW., 1968, LINEAR ALGEBRA APPL, V1, P103, DOI DOI 10.1016/0024-3795(68)90052-9
[12]  
Dennis, 1996, NUMERICAL METHODS UN
[13]  
Dikin I.I., 1967, Soviet Mathematics Doklady, V8, P674
[14]  
Fletcher R., 1971, J I MATH APPL, V7, P76
[15]   COMPUTING OPTIMAL LOCALLY CONSTRAINED STEPS [J].
GAY, DM .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1981, 2 (02) :186-197
[16]  
Gill M., 1981, Practical Optimization
[17]  
Gill P. E., 1974, Mathematical Programming, V7, P311, DOI 10.1007/BF01585529
[18]   PROPERTIES OF A REPRESENTATION OF A BASIS FOR THE NULL SPACE [J].
GILL, PE ;
MURRAY, W ;
SAUNDERS, MA ;
STEWART, GW ;
WRIGHT, MH .
MATHEMATICAL PROGRAMMING, 1985, 33 (02) :172-186
[19]   ON PROJECTED NEWTON BARRIER METHODS FOR LINEAR-PROGRAMMING AND AN EQUIVALENCE TO KARMARKAR PROJECTIVE METHOD [J].
GILL, PE ;
MURRAY, W ;
SAUNDERS, MA ;
TOMLIN, JA ;
WRIGHT, MH .
MATHEMATICAL PROGRAMMING, 1986, 36 (02) :183-209
[20]  
GOLDFARB D, 1991, MATH PROGRAM, V49, P325