Phosphorylation of caldesmon during smooth muscle contraction and cell migration or proliferation

被引:56
作者
Kordowska, J [1 ]
Huang, RJ [1 ]
Wang, CLA [1 ]
机构
[1] Boston Biomed Res Inst, Watertown, MA 02472 USA
关键词
caldesmon; actin cytoskeleton; cell migration; cell division; phosphorylation; MAPK; smooth muscle contractility;
D O I
10.1007/s11373-005-9060-8
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The actin-binding protein caldesmon (CaD) exists both in smooth muscle (the heavy isoform, h-CaD) and non-muscle cells (the light isoform, l-CaD). In smooth muscles h-CaD binds to myosin and actin simultaneously and modulates the actomyosin interaction. In non-muscle cells l-CaD binds to actin and stabilizes the actin stress fibers; it may also mediate the interaction between actin and non-muscle myosins. Both h- and l-CaD are phosphorylated in vivo upon stimulation. The major phosphorylation sites of h-CaD when activated by phorbol ester are the Erk-specific sites, modification of which is attenuated by the MEK inhibitor PD98059. The same sites in l-CaD are also phosphorylated when cells are stimulated to migrate, whereas in dividing cells l-CaD is phosphorylated more extensively, presumably by cdc2 kinase. Both Erk and cdc2 are members of the MAPK family. Thus it appears that CaD is a downstream effector of the Ras signaling pathways. Significantly, the phosphorylatable serine residues shared by both CaD isoforms are in the C-terminal region that also contains the actin-binding sites. Biochemical and structural studies indicated that phosphorylation of CaD at the Erk sites is accompanied by a conformational change that partially dissociates CaD from actin. Such a structural change in h-CaD exposes the myosin-binding sites on the actin surface and allows actomyosin interactions in smooth muscles. In the case of non-muscle cells, the change in l-CaD weakens the stability of the actin filament and facilitates its disassembly. Indeed, the level of l-CaD modification correlates very well in a reciprocal manner with the level of actin stress fibers. Since both cell migration and cell division require dynamic remodeling of actin cytoskeleton that leads to cell shape changes, phosphorylation of CaD may therefore serve as a plausible means to regulate these processes. Thus CaD not only links the smooth muscle contractility and non-muscle motility, but also provides a common mechanism for the regulation of cell migration and cell proliferation.
引用
收藏
页码:159 / 172
页数:14
相关论文
共 69 条
[31]   Regulation of vascular smooth muscle tone by N-terminal region of caldesmon - Possible role of tethering actin to myosin [J].
Lee, YH ;
Gallant, C ;
Guo, HQ ;
Li, YH ;
Wang, CLA ;
Morgan, KG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (05) :3213-3220
[32]   Visualization of caldesmon on smooth muscle thin filaments [J].
Lehman, W ;
Vibert, P ;
Craig, R .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 274 (03) :310-317
[33]   Regulation of caldesmon activity by Cdc2 kinase plays an important role in maintaining membrane cortex integrity during cell division [J].
Li, Y ;
Wessels, D ;
Wang, T ;
Lin, JLC ;
Soll, DR ;
Lin, JJC .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2003, 60 (01) :198-211
[34]   The major myosin-binding site of caldesmon resides near its N-terminal extreme [J].
Li, YH ;
Zhuang, SB ;
Guo, HQ ;
Mabuchi, K ;
Lu, RC ;
Wang, CLA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (15) :10989-10994
[35]   The MAP kinase pathway is required for entry into mitosis and cell survival [J].
Liu, X ;
Yan, S ;
Zhou, TH ;
Terada, Y ;
Erikson, RL .
ONCOGENE, 2004, 23 (03) :763-776
[36]   Immunocytochemical localization of caldesmon and calponin in chicken gizzard smooth muscle [J].
Mabuchi, K ;
Li, YH ;
Tao, T ;
Wang, CLA .
JOURNAL OF MUSCLE RESEARCH AND CELL MOTILITY, 1996, 17 (02) :243-260
[37]   αvβ3 integrin expression up-regulates cdc2, which modulates cell migration [J].
Manes, T ;
Zheng, DQ ;
Tognin, S ;
Woodard, AS ;
Marchisio, PC ;
Languino, LR .
JOURNAL OF CELL BIOLOGY, 2003, 161 (04) :817-826
[38]  
Marston S. B., 1996, BIOCH SMOOTH MUSCLE, P77
[39]   CALDESMON IS A CA-2+-REGULATORY COMPONENT OF NATIVE SMOOTH-MUSCLE THIN-FILAMENTS [J].
MARSTON, SB ;
LEHMAN, W .
BIOCHEMICAL JOURNAL, 1985, 231 (03) :517-522
[40]   Caldesmon [J].
Matsumura, Fumio ;
Yamashiro, Shigeko .
CURRENT OPINION IN CELL BIOLOGY, 1993, 5 (01) :70-76