Map-likelihood phasing

被引:76
作者
Terwilliger, TC [1 ]
机构
[1] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA
来源
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY | 2001年 / 57卷
关键词
D O I
10.1107/S0907444901013749
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The recently developed technique of maximum-likelihood density modification [Terwilliger (2000), Acta Cryst. D56, 965-972] allows a calculation of phase probabilities based on the likelihood of the electron-density map to be carried out separately from the calculation of any prior phase probabilities. Here, it is shown that phase-probability distributions calculated from the map-likelihood function alone can be highly accurate and that they show minimal bias towards the phases used to initiate the calculation. Map-likelihood phase probabilities depend upon expected characteristics of the electron-density map, such as a defined solvent region and expected electron-density distributions within the solvent region and the region occupied by a macromolecule. In the simplest case, map-likelihood phase-probability distributions are largely based on the flatness of the solvent region. Though map-likelihood phases can be calculated without prior phase information, they are greatly enhanced by high-quality starting phases. This leads to the technique of prime-and-switch phasing for removing model bias. In prime-and-switch phasing, biased phases such as those from a model are used to prime or initiate map-likelihood phasing, then final phases are obtained from map-likelihood phasing alone. Map-likelihood phasing can be applied in cases with solvent content as low as 30%. Potential applications of map-likelihood phasing include unbiased phase calculation from molecular-replacement models, iterative model building, unbiased electron-density maps for cases where 2F(o)-F-c or sigma (A)-weighted maps would currently be used, structure validation and ab initio phase determination from solvent masks, non-crystallographic symmetry or other knowledge about expected electron density.
引用
收藏
页码:1763 / 1775
页数:13
相关论文
共 50 条
[1]   Methods used in the structure determination of bovine mitochondrial F-1 ATPase [J].
Abrahams, JP ;
Leslie, AGW .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1996, 52 :30-42
[2]   Extending the limits of molecular replacement through combined simulated annealing and maximum-likelihood refinement [J].
Adams, PD ;
Pannu, NS ;
Read, RJ ;
Brunger, AT .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1999, 55 :181-190
[3]   SIMULATED ANNEALING FOR PHASING USING SPATIAL CONSTRAINTS [J].
BERAN, P ;
SZOKE, A .
ACTA CRYSTALLOGRAPHICA SECTION A, 1995, 51 :20-27
[4]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[5]   THE CRYSTAL-STRUCTURE OF THE BACTERIAL CHAPERONIN GROEL AT 2.8-ANGSTROM [J].
BRAIG, K ;
OTWINOWSKI, Z ;
HEGDE, R ;
BOISVERT, DC ;
JOACHIMIAK, A ;
HORWICH, AL ;
SIGLER, PB .
NATURE, 1994, 371 (6498) :578-586
[6]   REFINED STRUCTURE OF THE GENE-5 DNA-BINDING PROTEIN FROM BACTERIOPHAGE-FD [J].
BRAYER, GD ;
MCPHERSON, A .
JOURNAL OF MOLECULAR BIOLOGY, 1983, 169 (02) :565-596
[7]   A BAYESIAN STATISTICAL-THEORY OF THE PHASE PROBLEM .1. A MULTICHANNEL MAXIMUM-ENTROPY FORMALISM FOR CONSTRUCTING GENERALIZED JOINT PROBABILITY-DISTRIBUTIONS OF STRUCTURE FACTORS [J].
BRICOGNE, G .
ACTA CRYSTALLOGRAPHICA SECTION A, 1988, 44 :517-545
[8]   MAXIMUM-ENTROPY AND THE FOUNDATIONS OF DIRECT METHODS [J].
BRICOGNE, G .
ACTA CRYSTALLOGRAPHICA SECTION A, 1984, 40 (JUL) :410-445
[9]   General quadratic functions in real and reciprocal space and their application to likelihood phasing [J].
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2000, 56 :1612-1621
[10]   Phase combination and cross validation in iterated density-modification calculations [J].
Cowtan, KD ;
Main, P .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1996, 52 :43-48