Morphologically Robust NiFe2O4 Nanofibers as High Capacity Li-Ion Battery Anode Material

被引:281
作者
Cherian, Christie Thomas [1 ]
Sundaramurthy, Jayaraman [2 ,3 ]
Reddy, M. V. [1 ]
Kumar, Palanisamy Suresh [3 ]
Mani, Kalaivani [3 ]
Pliszka, Damian [3 ]
Sow, Chorng Haur [1 ]
Ramakrishna, Seeram [2 ,3 ]
Chowdari, B. V. R. [1 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117551, Singapore
[2] Natl Univ Singapore, NUS Nanosci & Nanotechnol Initiat, Singapore 117576, Singapore
[3] Natl Univ Singapore, Dept Mech Engn, Singapore 117576, Singapore
关键词
NiFe2O4; nanofibers; electrospinning; anode; Li-ion battery; impedance; HIGH-PERFORMANCE ANODE; COMPOSITE NANOFIBERS; STORAGE PERFORMANCE; CYCLING PROPERTIES; LITHIUM; NANOPARTICLES; ELECTRODES; SPINEL; CYCLABILITY; IMPEDANCE;
D O I
10.1021/am401779p
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, the electrochemical performance of NiFe2O4 nanofibers synthesized by an electrospinning approach have been discussed in detail. Lithium storage properties of nanofibers are evaluated and compared with NiFe2O4 nanoparticles by galvanostatic cycling and cyclic voltammetry studies, both in half-cell configurations. Nanofibers exhibit a higher charge-storage capacity of 1000 mAh g(-1) even after 100 cycles with high Coulmbic efficiency of 100 % between 10 and 100 cycles. Ex situ microscopy studies confirmed that cycled nanofiber electrodes maintained the morphology and remained intact even after 100 charge-discharge cycles. The NiFe2O4 nanofiber electrode does not experience any structural stress and eventual pulverisation during lithium cycling and hence provides an efficient electron conducting pathway. The excellent electrochemical performance of NiFe2O4 nanofibers is due to the unique porous morphology of continuous nanofibers.
引用
收藏
页码:9957 / 9963
页数:7
相关论文
共 35 条
[1]   Probing the morphology-device relation of Fe2O3 nanostructures towards photovoltaic and sensing applications [J].
Agarwala, S. ;
Lim, Z. H. ;
Nicholson, E. ;
Ho, G. W. .
NANOSCALE, 2012, 4 (01) :194-205
[2]   Changes in oxidation state and magnetic order of iron atoms during the electrochemical reaction of lithium with NiFe2O4 [J].
Alcántara, R ;
Jaraba, M ;
Lavela, P ;
Tirado, JL ;
Jumas, JC ;
Olivier-Fourcade, J .
ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (01) :16-21
[3]   Electrospun Carbon-Tin Oxide Composite Nanofibers for Use as Lithium Ion Battery Anodes [J].
Bonino, Christopher A. ;
Ji, Liwen ;
Lin, Zhan ;
Toprakci, Ozan ;
Zhang, Xiangwu ;
Khan, Saad A. .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (07) :2534-2542
[4]  
Cao G, 2011, NANOSTRUCTURES NANOM, V2, P581
[5]   Electrochemical impedance characterization of FeSn2 electrodes for Li-ion batteries [J].
Chamas, M. ;
Lippens, P-E. ;
Jumas, J-C. ;
Hassoun, J. ;
Panero, S. ;
Scrosati, B. .
ELECTROCHIMICA ACTA, 2011, 56 (19) :6732-6736
[6]   Synthesis and Enhanced Lithium Storage Properties of Electrospun V2O5 Nanofibers in Full-Cell Assembly with a Spinel Li4Ti5O12 Anode [J].
Cheah, Yan Ling ;
Aravindan, Vanchiappan ;
Madhavi, Srinivasan .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (08) :3475-3480
[7]   LITHIUM INSERTION INTO SPINEL FERRITES [J].
CHEN, CJ ;
GREENBLATT, M ;
WASZCZAK, JV .
SOLID STATE IONICS, 1986, 18-9 (pt 2) :838-846
[8]   Facile synthesis and Li-storage performance of SnO nanoparticles and microcrystals [J].
Cherian, Christie T. ;
Reddy, M. V. ;
Haur, Sow Chorng ;
Chowdari, B. V. R. .
RSC ADVANCES, 2013, 3 (09) :3118-3123
[9]   Li-cycling properties of nano-crystalline (Ni1-x Zn x )Fe2O4 (0 ≤ x ≤ 1) [J].
Cherian, Christie Thomas ;
Reddy, M. V. ;
Rao, G. V. Subba ;
Sow, Chorng Haur ;
Chowdari, B. V. R. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (05) :1823-1832
[10]   Porous Si anode materials for lithium rechargeable batteries [J].
Cho, Jaephil .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (20) :4009-4014