Morphologically Robust NiFe2O4 Nanofibers as High Capacity Li-Ion Battery Anode Material

被引:281
作者
Cherian, Christie Thomas [1 ]
Sundaramurthy, Jayaraman [2 ,3 ]
Reddy, M. V. [1 ]
Kumar, Palanisamy Suresh [3 ]
Mani, Kalaivani [3 ]
Pliszka, Damian [3 ]
Sow, Chorng Haur [1 ]
Ramakrishna, Seeram [2 ,3 ]
Chowdari, B. V. R. [1 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117551, Singapore
[2] Natl Univ Singapore, NUS Nanosci & Nanotechnol Initiat, Singapore 117576, Singapore
[3] Natl Univ Singapore, Dept Mech Engn, Singapore 117576, Singapore
关键词
NiFe2O4; nanofibers; electrospinning; anode; Li-ion battery; impedance; HIGH-PERFORMANCE ANODE; COMPOSITE NANOFIBERS; STORAGE PERFORMANCE; CYCLING PROPERTIES; LITHIUM; NANOPARTICLES; ELECTRODES; SPINEL; CYCLABILITY; IMPEDANCE;
D O I
10.1021/am401779p
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, the electrochemical performance of NiFe2O4 nanofibers synthesized by an electrospinning approach have been discussed in detail. Lithium storage properties of nanofibers are evaluated and compared with NiFe2O4 nanoparticles by galvanostatic cycling and cyclic voltammetry studies, both in half-cell configurations. Nanofibers exhibit a higher charge-storage capacity of 1000 mAh g(-1) even after 100 cycles with high Coulmbic efficiency of 100 % between 10 and 100 cycles. Ex situ microscopy studies confirmed that cycled nanofiber electrodes maintained the morphology and remained intact even after 100 charge-discharge cycles. The NiFe2O4 nanofiber electrode does not experience any structural stress and eventual pulverisation during lithium cycling and hence provides an efficient electron conducting pathway. The excellent electrochemical performance of NiFe2O4 nanofibers is due to the unique porous morphology of continuous nanofibers.
引用
收藏
页码:9957 / 9963
页数:7
相关论文
共 35 条
[11]  
Choi D, 2011, GREEN CHEM CHEM ENG, P1
[12]   Carbothermal synthesis, spectral and magnetic characterization and Li-cyclability of the Mo-cluster compounds, LiYMo3O8 and Mn2Mo3O8 [J].
Das, B. ;
Reddy, M. V. ;
Krishnamoorthi, C. ;
Tripathy, S. ;
Mahendiran, R. ;
Rao, G. V. Subba ;
Chowdari, B. V. R. .
ELECTROCHIMICA ACTA, 2009, 54 (12) :3360-3373
[13]   Nickel ferrite-graphene heteroarchitectures: Toward high-performance anode materials for lithium-ion batteries [J].
Fu, Yongsheng ;
Wan, Yunhai ;
Xia, Hui ;
Wang, Xin .
JOURNAL OF POWER SOURCES, 2012, 213 :338-342
[14]   Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life [J].
Ge, Mingyuan ;
Rong, Jiepeng ;
Fang, Xin ;
Zhou, Chongwu .
NANO LETTERS, 2012, 12 (05) :2318-2323
[15]   An update on the reactivity of nanoparticles Co-based compounds towards Li [J].
Grugeon, S ;
Laruelle, S ;
Dupont, L ;
Tarascon, JM .
SOLID STATE SCIENCES, 2003, 5 (06) :895-904
[16]   Synthesis and characterization of Li3V(2-2x/3)Mgx(PO4)3/C cathode material for lithium-ion batteries [J].
Huang, J. S. ;
Yang, L. ;
Liu, K. Y. ;
Tang, Y. F. .
JOURNAL OF POWER SOURCES, 2010, 195 (15) :5013-5018
[17]   CoFe2O4 and NiFe2O4 synthesized by sol-gel procedures for their use as anode materials for Li ion batteries [J].
Lavela, P. ;
Tirado, J. L. .
JOURNAL OF POWER SOURCES, 2007, 172 (01) :379-387
[18]   NiMn2-xFexO4 prepared by a reverse micelles method as conversion anode materials for Li-ion batteries [J].
Lavela, P. ;
Kyeremateng, N. A. ;
Tirado, J. L. .
MATERIALS CHEMISTRY AND PHYSICS, 2010, 124 (01) :102-108
[19]   Impedance of a single intercalation particle and of non-homogeneous, multilayered porous composite electrodes for Li-ion batteries [J].
Levi, MD ;
Aurbach, D .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (31) :11693-11703
[20]  
Nazri G.-A., 2003, SCI TECHNOLOGY, P728