Adiabatic theorem without a gap condition

被引:159
作者
Avron, JE [1 ]
Elgart, A [1 ]
机构
[1] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
关键词
D O I
10.1007/s002200050620
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the adiabatic theorem for quantum evolution without the traditional gap condition. All that this adiabatic theorem needs is a (piecewise) twice differentiable finite dimensional spectral projection. The result implies that the adiabatic theorem holds for the ground state of atoms in quantized radiation field. The general result we prove gives no information on the rate at which the adiabatic limit is approached. With additional spectral information one can also estimate this rate.
引用
收藏
页码:445 / 463
页数:19
相关论文
共 56 条
[11]   MATHEMATICAL-THEORY OF NONRELATIVISTIC MATTER AND RADIATION [J].
BACH, V ;
FROHLICH, J ;
SIGAL, IM .
LETTERS IN MATHEMATICAL PHYSICS, 1995, 34 (03) :183-201
[12]   Quantum electrodynamics of confined nonrelativistic particles [J].
Bach, V ;
Frohlich, J ;
Sigal, IM .
ADVANCES IN MATHEMATICS, 1998, 137 (02) :299-395
[13]  
BACH V, IN PRESS POSITIVE CO
[14]   CHAOTIC CLASSICAL AND HALF-CLASSICAL ADIABATIC REACTIONS - GEOMETRIC MAGNETISM AND DETERMINISTIC FRICTION [J].
BERRY, MV ;
ROBBINS, JM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 442 (1916) :659-672
[16]   HISTORIES OF ADIABATIC QUANTUM TRANSITIONS [J].
BERRY, MV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 429 (1876) :61-72
[17]   Proof of Adiabatic law [J].
Born, M. ;
Fock, V. .
ZEITSCHRIFT FUR PHYSIK, 1928, 51 (3-4) :165-180
[18]   THE GOODNESS OF ERGODIC ADIABATIC INVARIANTS [J].
BROWN, R ;
OTT, E ;
GREBOGI, C .
JOURNAL OF STATISTICAL PHYSICS, 1987, 49 (3-4) :511-550
[19]  
Cohen-Tannoudji C., 1992, ATOMS PHOTONS INTERA
[20]  
COMBES JM, 1997, J MATH ANAL APPL, V2130, P698