3′-End processing of pre-mRNA in eukaryotes

被引:194
作者
Wahle, E
Rüegsegger, U
机构
[1] Univ Halle Wittenberg, Inst Biochem, D-06120 Halle, Germany
[2] Univ Basel, Biozentrum, CH-4056 Basel, Switzerland
关键词
RNA processing; poly(A) tail; polyadenylation;
D O I
10.1016/S0168-6445(99)00008-X
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
3'-Ends of almost all eukaryotic mRNAs are generated by endonucleolytic cleavage and addition of a poly(A) tail. In mammalian cells, the reaction depends on the sequence AAUAAA upstream of the cleavage site, a degenerate GU-rich sequence element downstream of the cleavage site and stimulatory sequences upstream of AAUAAA, Six factors have been identified that carry out the two reactions, With a single exception, they have been purified to homogeneity and cDNAs for 11 subunits have been cloned. Some of the cooperative RNA-protein and protein-protein interactions within the processing complex have been analyzed, but many details, including the identity of the endonuclease, remain unknown. Several examples of regulated polyadenylation are being analyzed at the molecular level. In the yeast Saccharomyces cerevisiae, sequences directing cleavage and polyadenylation are more degenerate than in metazoans, and a downstream element has not been identified. The list of processing factors may be complete now with approximately a dozen polypeptides, but their functions in the reaction are largely unknown. 3'-Processing is known to be coupled to transcription. This connection is thought to involve interactions of processing factors with the mRNA cap as well as with RNA polymerase II. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:277 / 295
页数:19
相关论文
共 138 条
[21]   CONSERVED STRUCTURES AND DIVERSITY OF FUNCTIONS OF RNA-BINDING PROTEINS [J].
BURD, CG ;
DREYFUSS, G .
SCIENCE, 1994, 265 (5172) :615-621
[22]   RNA PROCESSING GENERATES THE MATURE 3' END OF YEAST CYC1 MESSENGER-RNA INVITRO [J].
BUTLER, JS ;
PLATT, T .
SCIENCE, 1988, 242 (4883) :1270-1274
[23]   Essential yeast protein with unexpected similarity to subunits of mammalian cleavage and polyadenylation specificity factor (CPSF) [J].
Chanfreau, G ;
Noble, SM ;
Guthrie, C .
SCIENCE, 1996, 274 (5292) :1511-1514
[24]   CLEAVAGE SITE DETERMINANTS IN THE MAMMALIAN POLYADENYLATION SIGNAL [J].
CHEN, F ;
MACDONALD, CC ;
WILUSZ, J .
NUCLEIC ACIDS RESEARCH, 1995, 23 (14) :2614-2620
[25]   SEPARATION OF FACTORS REQUIRED FOR CLEAVAGE AND POLYADENYLATION OF YEAST PRE-MESSENGER-RNA [J].
CHEN, J ;
MOORE, C .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (08) :3470-3481
[26]   mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain [J].
Cho, EJ ;
Takagi, T ;
Moore, CR ;
Buratowski, S .
GENES & DEVELOPMENT, 1997, 11 (24) :3319-3326
[27]   Cell-cycle related regulation poly(A) polymerase by phosphorylation [J].
Colgan, DF ;
Murthy, KGK ;
Prives, C ;
Manley, JL .
NATURE, 1996, 384 (6606) :282-285
[28]   Inhibition of poly(A) polymerase requires p34cdc2/cyclin B phosphorylation of multiple consensus and non-consensus sites [J].
Colgan, DF ;
Murthy, KG ;
Zhao, W ;
Prives, C ;
Manley, JL .
EMBO JOURNAL, 1998, 17 (04) :1053-1062
[29]   Mechanism and regulation of mRNA polyadenylation [J].
Colgan, DF ;
Manley, JL .
GENES & DEVELOPMENT, 1997, 11 (21) :2755-2766
[30]  
Cooke C, 1996, MOL CELL BIOL, V16, P2579