Using the Unfolded State as the Reference State Improves the Performance of Statistical Potentials

被引:4
作者
Liu, Yufeng [1 ]
Gong, Haipeng [1 ]
机构
[1] Tsinghua Univ, Sch Life Sci, Minist Educ, Key Lab Bioinformat, Beijing 100084, Peoples R China
关键词
PROTEIN TERTIARY STRUCTURES; MEAN FORCE; BIOMOLECULAR SIMULATION; POLYPEPTIDE-CHAINS; DISCRIMINATION; PREDICTION; CONFORMATIONS; PEPTIDES; ACCURATE;
D O I
10.1016/j.bpj.2012.09.023
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Distance-dependent statistical potentials are an important class of energy functions extensively used in modeling protein structures and energetics. These potentials are obtained by statistically analyzing the proximity of atoms in all combinatorial amino-acid pairs in proteins with known structures. In model evaluation, the statistical potential is usually subtracted by the value of a reference state for better selectivity. An ideal reference state should include the general chemical properties of polypeptide chains so that only the unique factors stabilizing the native structures are retained after calibrating on reference state. However, reference states available as of this writing rarely model specific chemical constraints of peptide bonds and therefore poorly reflect the behavior of polypeptide chains. In this work, we proposed a statistical potential based on unfolded state ensemble (SPOUSE), where the reference state is summarized from the unfolded state ensembles of proteins produced according to the statistical coil model. Due to its better representation of the features of polypeptides, SPOUSE outperforms three of the most widely used distance-dependent potentials not only in native conformation identification, but also in the selection of close-to-native models and correlation coefficients between energy and model error. Furthermore, SPOUSE shows promising possibility of further improvement by integration with the orientation-dependent side-chain potentials.
引用
收藏
页码:1950 / 1959
页数:10
相关论文
共 51 条
[1]  
Apweiler R, 2004, NUCLEIC ACIDS RES, V32, pD115, DOI [10.1093/nar/gkh131, 10.1093/nar/gkw1099]
[2]  
Arab S, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-16
[3]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[4]   CHARMM: The Biomolecular Simulation Program [J].
Brooks, B. R. ;
Brooks, C. L., III ;
Mackerell, A. D., Jr. ;
Nilsson, L. ;
Petrella, R. J. ;
Roux, B. ;
Won, Y. ;
Archontis, G. ;
Bartels, C. ;
Boresch, S. ;
Caflisch, A. ;
Caves, L. ;
Cui, Q. ;
Dinner, A. R. ;
Feig, M. ;
Fischer, S. ;
Gao, J. ;
Hodoscek, M. ;
Im, W. ;
Kuczera, K. ;
Lazaridis, T. ;
Ma, J. ;
Ovchinnikov, V. ;
Paci, E. ;
Pastor, R. W. ;
Post, C. B. ;
Pu, J. Z. ;
Schaefer, M. ;
Tidor, B. ;
Venable, R. M. ;
Woodcock, H. L. ;
Wu, X. ;
Yang, W. ;
York, D. M. ;
Karplus, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) :1545-1614
[5]   The Amber biomolecular simulation programs [J].
Case, DA ;
Cheatham, TE ;
Darden, T ;
Gohlke, H ;
Luo, R ;
Merz, KM ;
Onufriev, A ;
Simmerling, C ;
Wang, B ;
Woods, RJ .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1668-1688
[6]   The GROMOS software for biomolecular simulation:: GROMOS05 [J].
Christen, M ;
Hünenberger, PH ;
Bakowies, D ;
Baron, R ;
Bürgi, R ;
Geerke, DP ;
Heinz, TN ;
Kastenholz, MA ;
Kräutler, V ;
Oostenbrink, C ;
Peter, C ;
Trzesniak, D ;
Van Gunsteren, WF .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1719-1751
[7]   What is the best reference state for designing statistical atomic potentials in protein structure prediction? [J].
Deng, Haiyou ;
Jia, Ya ;
Wei, Yanyu ;
Zhang, Yang .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2012, 80 (09) :2311-2322
[8]   Role of unfolded state heterogeneity and en-route ruggedness in protein folding kinetics [J].
Ellison, PA ;
Cavagnero, S .
PROTEIN SCIENCE, 2006, 15 (03) :564-582
[9]   A composite score for predicting errors in protein structure models [J].
Eramian, David ;
Shen, Min-Yi ;
Devos, Damien ;
Melo, Francisco ;
Sali, Andrej ;
Marti-Renom, Marc A. .
PROTEIN SCIENCE, 2006, 15 (07) :1653-1666
[10]   A knowledge-based potential with an accurate description of local interactions improves discrimination between native and near-native protein conformations [J].
Ferrada, Evandro ;
Vergara, Ismael A. ;
Melo, Francisco .
CELL BIOCHEMISTRY AND BIOPHYSICS, 2007, 49 (02) :111-124