SREBP-1 dimerization specificity maps to both the helix-loop-helix and leucine zipper domains - Use of a dominant negative

被引:32
作者
Rishi, V
Gal, J
Krylov, D
Fridriksson, J
Boysen, MS
Mandrup, S
Vinson, C
机构
[1] NCI, Lab Metab, NIH, Bethesda, MD 20892 USA
[2] Gene Log Inc, Gaithersburg, MD 20878 USA
[3] Univ So Denmark, Odense Univ, Dept Biochem & Mol Biol, DK-5230 Odense, Denmark
关键词
D O I
10.1074/jbc.M308000200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mammalian SREBP family contains two genes that code for B-HLH-ZIP proteins that bind sequence-specific DNA to regulate the expression of genes involved in lipid metabolism. We have designed a dominant negative (DN), termed A-SREBP-1, that inhibits the DNA binding of either SREBP protein. A-SREBP-1 consists of the dimerization domain of B-SREBP-1 and a polyglutamic acid sequence that replaces the basic region. A-SREBP-1 heterodimerizes with either B-SREBP-1 or B-SREBP-2, and both heterodimers are more stable than B-SREBP-1 bound to DNA. Circular dichroism thermal denaturation studies show that the B-SREBP-1 . A-SREBP-1 heterodimer is - 9.8 kcal mol(-1) dimer(-1) more stable than the B-SREBP-1 homodimer. EMSA assays demonstrate that A-SREBP-1 can inhibit the DNA binding of either B-SREBP-1 or B-SREBP-2 in an equimolar competition but does not inhibit the DNA binding of the three B-HLH-ZIP proteins MAX, USF, or MITF, even at 100 molar eq. Chimeric proteins containing the HLH domain of SREBP-1 and the leucine zipper from either MAX, USF, or MITF indicate that both the HLH and leucine zipper regions of SREBP-1 contribute to its dimerization specificity. Transient co-transfection studies demonstrate that A-SREBP-1 can inhibit the transactivation of SREBP-1 and SREBP-2 but not USF. A-SREBP-1 may be useful in metabolic diseases where SREBP family members are overexpressed.
引用
收藏
页码:11863 / 11874
页数:12
相关论文
共 35 条
[1]   A heterodimerizing leucine zipper coiled coil system for examining the specificity of a position interactions: Amino acids I, V, L, N, A, and K [J].
Acharya, A ;
Ruvinov, SB ;
Gal, J ;
Moll, JR ;
Vinson, C .
BIOCHEMISTRY, 2002, 41 (48) :14122-14131
[2]   PROTEIN STABILITY CURVES [J].
BECKTEL, WJ ;
SCHELLMAN, JA .
BIOPOLYMERS, 1987, 26 (11) :1859-1877
[3]   The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor [J].
Brown, MS ;
Goldstein, JL .
CELL, 1997, 89 (03) :331-340
[4]   Coiled coils: a highly versatile protein folding motif [J].
Burkhard, P ;
Stetefeld, J ;
Strelkov, SV .
TRENDS IN CELL BIOLOGY, 2001, 11 (02) :82-88
[5]   Unfolding of a leucine zipper is not a simple two-state transition [J].
Dragan, AI ;
Privalov, PL .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 321 (05) :891-908
[6]   Regulation of gene expression by SREBP and SCAP [J].
Edwards, PA ;
Tabor, D ;
Kast, HR ;
Venkateswaran, A .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2000, 1529 (1-3) :103-113
[7]   RECOGNITION BY MAX OF ITS COGNATE DNA THROUGH A DIMERIC B/HLH/Z DOMAIN [J].
FERREDAMARE, AR ;
PRENDERGAST, GC ;
ZIFF, EB ;
BURLEY, SK .
NATURE, 1993, 363 (6424) :38-45
[8]   STRUCTURE AND FUNCTION OF THE B/HLH/Z DOMAIN OF USF [J].
FERREDAMARE, AR ;
POGNONEC, P ;
ROEDER, RG ;
BURLEY, SK .
EMBO JOURNAL, 1994, 13 (01) :180-189
[9]  
Foretz M, 1999, MOL CELL BIOL, V19, P3760
[10]   Sterol regulatory element-binding proteins: activators of cholesterol and fatty acid biosynthesis [J].
Horton, JD ;
Shimomura, I .
CURRENT OPINION IN LIPIDOLOGY, 1999, 10 (02) :143-150