ZnO-based hollow nanoparticles by selective etching: Elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis

被引:562
作者
Zeng, Haibo [1 ]
Cai, Weiping [1 ]
Liu, Peisheng [1 ]
Xu, Xiaoxia [1 ]
Zhou, Huijuan [2 ]
Klingshirn, Claus [2 ]
Kalt, Heinz [2 ]
机构
[1] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China
[2] Univ Karlsruhe TH, Inst Appl Phys, D-76128 Karlsruhe, Germany
关键词
ZnO; hollow nanoparticles; selective etching; metal-semiconductor interface; luminescence; photocatalysis;
D O I
10.1021/nn800353q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A weak acid selective etching strategy was put forward to fabricate oxide-based hollow nanoparticles (HNPs) using core/shell nanostructures of active metal/oxide nanoparticles as sacrificial templates. ZnO-based HNPs, including pure NO, Au/ZnO, Pt/ZnO, and Au/Pt/ZnO HNPs with diameter below 50 nm and shell thickness below 6 nm has been first achieved at low temperature. The diameter, thickness, and even sizes of ZnO and noble metal ultrafine crystals of HNPs can be well adjusted by the etching process. Synchronous with the formation of HNPs, the internal metal-semiconductor interfaces can be controllably eliminated (Zn-ZnO) and reconstructed (noble metal-NO). Excitingly, such microstructure manipulation has endued them with giant improvements in related performances, including the very strong blue luminescence with enhancement over 3 orders of magnitude for the pure NO HNPs and the greatly improved photocatalytic activity for the noble metal/ ZnO HNPs. These give them strong potentials in relevant applications, such as blue light emitting devices, environment remediation, drug delivery and release, energy storage and conversion, and sensors. The designed fabrication procedure is simple, feasible, and universal for a series of oxide and noble metal/oxide HNPs with controlled microstructure and improved performances.
引用
收藏
页码:1661 / 1670
页数:10
相关论文
共 45 条
[1]   An emergent catalytic material: Pt/ZnO catalyst for selective hydrogenation of crotonaldehyde [J].
Ammari, F ;
Lamotte, J ;
Touroude, R .
JOURNAL OF CATALYSIS, 2004, 221 (01) :32-42
[2]   SURFACE EFFECTS ON LOW-ENERGY CATHODOLUMINESCENCE OF ZINC-OXIDE [J].
BYLANDER, EG .
JOURNAL OF APPLIED PHYSICS, 1978, 49 (03) :1188-1195
[3]   Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents [J].
Chen, J ;
Saeki, F ;
Wiley, BJ ;
Cang, H ;
Cobb, MJ ;
Li, ZY ;
Au, L ;
Zhang, H ;
Kimmey, MB ;
Li, XD ;
Xia, YN .
NANO LETTERS, 2005, 5 (03) :473-477
[4]   Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes:: A review [J].
Fan, Hong Jin ;
Goesele, Ulrich ;
Zacharias, Margit .
SMALL, 2007, 3 (10) :1660-1671
[5]   Influence of surface diffusion on the formation of hollow nanostructures induced by the Kirkendall effect: The basic concept [J].
Fan, Hong Jin ;
Knez, Mato ;
Scholz, Roland ;
Hesse, Dietrich ;
Nielsch, Kornelius ;
Zacharias, Margit ;
Gosele, Ulrich .
NANO LETTERS, 2007, 7 (04) :993-997
[6]   Monocrystalline spinel nanotube fabrication based on the Kirkendall effect [J].
Fan, Hong Jin ;
Knez, Mato ;
Scholz, Roland ;
Nielsch, Kornelius ;
Pippel, Eckhard ;
Hesse, Dietrich ;
Zacharias, Margit ;
Goesele, Ulrich .
NATURE MATERIALS, 2006, 5 (08) :627-631
[7]   Mesoporous polyhedral cages and shells formed by textured self-assembly of ZnO nanocrystals [J].
Gao, PX ;
Wang, ZL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (37) :11299-11305
[8]   ZnO-based hollow microspheres: Biopolymer-assisted assemblies from ZnO nanorods [J].
Gao, Shuyan ;
Zhang, Hongjie ;
Wang, Xiaomei ;
Deng, Ruiping ;
Sun, Dehui ;
Zheng, Guoli .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (32) :15847-15852
[9]   Carbon nanothermometer containing gallium - Gallium's macroscopic properties are retained on a miniature scale in this nanodevice. [J].
Gao, YH ;
Bando, Y .
NATURE, 2002, 415 (6872) :599-599
[10]   Synthesis and characterization of poly(vinylpyrrolidone)-modified zinc oxide nanoparticles [J].
Guo, L ;
Yang, SH ;
Yang, CL ;
Yu, P ;
Wang, JN ;
Ge, WK ;
Wong, GKL .
CHEMISTRY OF MATERIALS, 2000, 12 (08) :2268-2274