Simple criterion for the occurrence of Bose-Einstein condensation

被引:27
作者
Kirsten, K [1 ]
Toms, DJ [1 ]
机构
[1] UNIV NEWCASTLE UPON TYNE, DEPT PHYS, NEWCASTLE UPON TYNE NE1 7RU, TYNE & WEAR, ENGLAND
关键词
D O I
10.1016/0370-2693(95)01505-1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We examine the occurrence of Bose-Einstein condensation in both nonrelativistic and relativistic systems with no self-interactions in a general setting. A simple condition for the occurrence of Bose-Einstein condensation can be given if we adopt generalized C-functions to define the quantum theory. We show that the crucial feature governing Bose-Einstein condensation is the dimension q associated with the continuous part of the eigenvalue spectrum of the Hamiltonian for nonrelativistic systems or the spatial part of the Klein-Gordon operator for relativistic systems. In either case Bose-Einstein condensation can only occur if q greater than or equal to 3.
引用
收藏
页码:119 / 123
页数:5
相关论文
共 45 条
[11]  
Einstein A, 1924, SITZBER PREUSS AKAD, P261
[12]   THERMODYNAMICS OF AN ULTRA-RELATIVISTIC IDEAL BOSE-GAS [J].
HABER, HE ;
WELDON, HA .
PHYSICAL REVIEW LETTERS, 1981, 46 (23) :1497-1500
[13]   FINITE-TEMPERATURE SYMMETRY-BREAKING AS BOSE-EINSTEIN CONDENSATION [J].
HABER, HE ;
WELDON, HA .
PHYSICAL REVIEW D, 1982, 25 (02) :502-525
[14]   PROGRESS IN THE BOSE-EINSTEIN CONDENSATION OF BIEXCITONS IN CUCL [J].
HASUO, M ;
NAGASAWA, N ;
ITOH, T ;
MYSYROWICZ, A .
PHYSICAL REVIEW LETTERS, 1993, 70 (09) :1303-1306
[15]   ZETA FUNCTION REGULARIZATION OF PATH INTEGRALS IN CURVED SPACETIME [J].
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 55 (02) :133-148
[16]   MAGNETIC TRAPPING OF SPIN-POLARIZED ATOMIC-HYDROGEN [J].
HESS, HF ;
KOCHANSKI, GP ;
DOYLE, JM ;
MASUHARA, N ;
KLEPPNER, D ;
GREYTAK, TJ .
PHYSICAL REVIEW LETTERS, 1987, 59 (06) :672-675
[17]   INFRARED BEHAVIOR AND FINITE-SIZE EFFECTS IN INFLATIONARY COSMOLOGY [J].
HU, BL ;
OCONNOR, DJ .
PHYSICAL REVIEW LETTERS, 1986, 56 (15) :1613-1616
[18]   SYMMETRY-BEHAVIOR IN CURVED SPACETIME - FINITE-SIZE EFFECT AND DIMENSIONAL REDUCTION [J].
HU, BL ;
OCONNOR, DJ .
PHYSICAL REVIEW D, 1987, 36 (06) :1701-1715
[19]   BOSE-EINSTEIN CONDENSATION, SPONTANEOUS SYMMETRY-BREAKING, AND GAUGE-THEORIES [J].
KAPUSTA, JI .
PHYSICAL REVIEW D, 1981, 24 (02) :426-439
[20]   BOSE-EINSTEIN CONDENSATION FOR INTERACTING SCALAR FIELDS IN CURVED SPACETIME [J].
KIRSTEN, K ;
TOMS, DJ .
PHYSICAL REVIEW D, 1995, 51 (12) :6886-6900