Smooth surface reconstruction via natural neighbour interpolation of distance functions

被引:82
作者
Boissonnat, JD [1 ]
Cazals, F [1 ]
机构
[1] INRIA, F-06902 Sophia Antipolis, France
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2002年 / 22卷 / 1-3期
关键词
natural neighbour interpolation; reconstruction; Delaunay triangulation; smooth surface; Voronoi diagram;
D O I
10.1016/S0925-7721(01)00048-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an algorithm to reconstruct smooth surfaces of arbitrary topology from unorganised sample points and normals. The method uses natural neighbour interpolation, works in any dimension and accommodates non-uniform samples. The reconstructed surface interpolates the data points and is implicitly represented as the zero set of some pseudo-distance function. It can be meshed so as to satisfy a user-defined error bound, which makes the method especially relevant for small point sets. Experimental results are presented for surfaces in R-3. (C) 2001 Elsevier Science B.V. All fights reserved.
引用
收藏
页码:185 / 203
页数:19
相关论文
共 33 条
[11]  
BOISSONNAT JD, 2001, COMP GEOM-THEOR APPL, V19, P153
[12]   Systems of coordinates associated with points scattered in the plane [J].
Brown, JL .
COMPUTER AIDED GEOMETRIC DESIGN, 1997, 14 (06) :547-559
[13]  
Bruce J. W., 1992, CURVES SINGULARITIES
[14]  
Chew L.P., 1993, P 9 ANN S COMP GEOM, P274
[15]  
Devillers O., 1998, Proceedings of the Fourteenth Annual Symposium on Computational Geometry, P106, DOI 10.1145/276884.276896
[16]  
Dey T. K., 1999, Proceedings of the Fifteenth Annual Symposium on Computational Geometry, P197, DOI 10.1145/304893.304972
[17]   3-DIMENSIONAL ALPHA-SHAPES [J].
EDELSBRUNNER, H ;
MUCKE, EP .
ACM TRANSACTIONS ON GRAPHICS, 1994, 13 (01) :43-72
[18]  
EDELSBRUNNER H, 1983, IEEE T INFORM THEORY, V29, P551, DOI 10.1109/TIT.1983.1056714
[19]  
Fomenko A., 1997, Topological modeling for visualization
[20]  
Giesen J., 1999, Proceedings of the Fifteenth Annual Symposium on Computational Geometry, P207, DOI 10.1145/304893.304973