RETRACTED: In vitro and in vivo molecular evidence of genistein action in augmenting the efficacy of cisplatin in pancreatic cancer (Retracted article.See vol.139, pg.2145,2016)

被引:71
作者
Banerjee, Sanjeev
Zhang, Yuxiang
Wang, Zhiwei
Che, Mingxin
Chiao, Paul J.
Abbruzzese, James L.
Sarkar, Fazlul H.
机构
[1] Wayne State Univ, Sch Med, Karmanos Canc Inst, Dept Pathol, Detroit, MI 48201 USA
[2] Univ Texas, MD Anderson Canc Ctr, Dept Surg Oncol, Houston, TX USA
[3] Univ Texas, MD Anderson Canc Ctr, Dept Gastrointestinal Med Oncol, Houston, TX USA
关键词
pancreatic cancer cells; orthotopic model; cisplatin; genistein;
D O I
10.1002/ijc.22332
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
We recently reported the potential of genistein in augmenting gemcitabine-induced killing of pancreatic cancer (Banerjee, S. et al., Cancer Research 2005;65:9064-72). Since cis-diaminedi-chloroplatinum (11) (cisplatin) is widely used against solid tumors, we further investigated whether genistein pretreatment could be used as a novel strategy for cisplatin-induced killing of pancreatic cancer cells in vitro and enhanced antitumor activity in vivo. Our in vitro results showed that pretreatment of cells with genistein followed by cisplatin resulted in significant loss of cell viability and potentiated apoptosis irrespective of the metastatic ability of cells. Mechanistically, genistein augmented cisplatin induced killing by down regulating transcription factor- NF-kappa B and anti-apoptotic Akt expression. NF-kappa B was found upregulated when pancreatic cancer cells were exposed to cisplatin, suggesting the potential mechanism of acquired chemo-resistance. In addition, we also showed, for the first time, that genistein in combination with cisplatin is more effective antitumor agent in our orthotopic tumor model. But most importantly, our data also showed that a specific target, such as NF-kappa B, was inactivated in animal tumors treated with genistein and cisplatin. Immunohistochemical data showed reduced staining for phospho-p65, Bcl-xL and MMP-9 in treated tumors compared to control tumors, but the lowest activity was seen in the combination group. These results provide strong molecular in vivo evidence in support of our hypothesis that inactivation of the NF-kappa B signaling pathway by genistein results in the chemo-sensitization of pancreatic tumors to cisplatin, which is likely to be an important and novel strategy for the treatment of pancreatic cancer. (c) 2006 Wiley-Liss, Inc.
引用
收藏
页码:906 / 917
页数:12
相关论文
共 54 条
[1]  
ADLERCREUTZ CHT, 1995, J NUTR, V125, pS757, DOI 10.1093/jn/125.3_Suppl.757S
[2]   Nuclear factor-κ-B:: The enemy within [J].
Aggarwal, BB .
CANCER CELL, 2004, 6 (03) :203-208
[3]  
AKIYAMA T, 1987, J BIOL CHEM, V262, P5592
[4]   Genistein-induced cell cycle arrest and apoptosis in a head and neck squamous cell carcinoma cell line [J].
Alhasan, SA ;
Pietrasczkiwicz, H ;
Alonso, MD ;
Ensley, J ;
Sarkar, FH .
NUTRITION AND CANCER-AN INTERNATIONAL JOURNAL, 1999, 34 (01) :12-19
[5]   Inhibition of NF-κB sensitizes human pancreatic carcinoma cells to apoptosis induced by etoposide (VP16) or doxorubicin [J].
Arlt, A ;
Vorndamm, J ;
Breitenbroich, M ;
Fölsch, UR ;
Kalthoff, H ;
Schmidt, WE ;
Schäfer, H .
ONCOGENE, 2001, 20 (07) :859-868
[6]   Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer [J].
Banerjee, S ;
Zhang, YX ;
Ali, S ;
Bhuiyan, M ;
Wang, ZW ;
Chiao, PJ ;
Philip, PA ;
Abbruzzese, J ;
Sarkar, FH .
CANCER RESEARCH, 2005, 65 (19) :9064-9072
[7]   Pancreatic cancer biology and genetics [J].
Bardeesy, N ;
DePinho, RA .
NATURE REVIEWS CANCER, 2002, 2 (12) :897-909
[8]  
BARNES S, 1995, J NUTR, V125, pS777, DOI 10.1093/jn/125.3_Suppl.777S
[9]   Regulation of Akt/PKB Ser473 phosphorylation [J].
Bayascas, JR ;
Alessi, DR .
MOLECULAR CELL, 2005, 18 (02) :143-145
[10]   Chemopreventive agents induce suppression of nuclear factor-κB leading to chemosensitization [J].
Bharti, AC ;
Aggarwal, BB .
CELL SIGNALING, TRANSCRIPTION, AND TRANSLATION AS THERAPEUTIC TARGETS, 2002, 973 :392-395