Numerical investigation on the stability of singular driven cavity flow

被引:129
作者
Auteri, F [1 ]
Parolini, N [1 ]
Quartapelle, L [1 ]
机构
[1] Politecn Milan, Dipartimento Ingn Aerospaziale, I-20158 Milan, Italy
关键词
stability of incompressible viscous flows; unsteady driven cavity flows; critical Reynolds number; Hopf bifurcation;
D O I
10.1006/jcph.2002.7145
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
By applying the singularity subtraction technique to the unsteady driven cavity problem, the stability of the impulsively started flow is investigated, without smoothing the corner singularity. A second-order spectral projection method allows localization of the critical Reynolds number for the first Hopf bifurcation in the interval [8017.6, 801 8.8). (C) 2002 Elsevier Science (USA).
引用
收藏
页码:1 / 25
页数:25
相关论文
共 32 条
[1]  
[Anonymous], 2000, COMPUT FLUID DYN J
[2]   Galerkin spectral method for the vorticity and stream function equations [J].
Auteri, F ;
Quartapelle, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 149 (02) :306-332
[3]   A mixed-basis spectral projection method [J].
Auteri, F ;
Parolini, N .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 175 (01) :1-23
[4]   Accurate ω-ψ spectral solution of the singular driven cavity problem [J].
Auteri, F ;
Quartapelle, L ;
Vigevano, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 180 (02) :597-615
[5]   Role of the LBB condition in weak spectral projection methods [J].
Auteri, F ;
Guermond, JL ;
Parolini, N .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 174 (01) :405-420
[6]  
Batchelor David., 2000, An Introduction to Fluid Dynamics
[7]   INSTABILITY MECHANISMS IN SHEAR-FLOW TRANSITION [J].
BAYLY, BJ ;
ORSZAG, SA ;
HERBERT, T .
ANNUAL REVIEW OF FLUID MECHANICS, 1988, 20 :359-391
[8]  
Bernardi Christine., 1992, APPROXIMATIONS SPECT
[9]   Benchmark spectral results on the lid-driven cavity flow [J].
Botella, O ;
Peyret, R .
COMPUTERS & FLUIDS, 1998, 27 (04) :421-433
[10]   Computing singular solutions of the Navier-Stokes equations with the Chebyshev-collocation method [J].
Botella, O ;
Peyret, R .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2001, 36 (02) :125-163