Asparagine-proline sequence within membrane-spanning segment of SREBP triggers intramembrane cleavage by Site-2 protease

被引:123
作者
Ye, J
Davé, UP
Grishin, NV
Goldstein, JL
Brown, MS
机构
[1] Univ Texas, SW Med Ctr, Dept Mol Genet, Dallas, TX 75390 USA
[2] Univ Texas, SW Med Ctr, Dept Biochem, Dallas, TX 75390 USA
关键词
membrane proteins; cholesterol metabolism; proteolysis;
D O I
10.1073/pnas.97.10.5123
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The NH2-terminal domains of membrane-bound sterol regulatory element-binding proteins (SREBPs) are released into the cytosol by regulated intramembrane proteolysis, after which they enter the nucleus to activate genes encoding lipid biosynthetic enzymes. Intramembrane proteolysis is catalyzed by Site-2 protease (S2P). a hydrophobic zinc metalloprotease that cleaves SREBPs at a membrane-embedded leucine-cysteine bond. In the current study, we use domain-swapping methods to localize the residues within the SREBP-2 membrane-spanning segment that are required for cleavage by S2P. The studies reveal a requirement for an asparagine-proline sequence in the middle third of the transmembrane segment. We propose a model in which the asparagine-proline sequence serves as an NH2-terminal cap for a portion of the transmembrane alpha-helix of SREBP, allowing the remainder of the alpha-helix to unwind partially to expose the peptide bond for cleavage by S2P.
引用
收藏
页码:5123 / 5128
页数:6
相关论文
共 34 条
[1]   A MECHANISM BY WHICH ADENOVIRUS VIRUS-ASSOCIATED RNAI CONTROLS TRANSLATION IN A TRANSIENT EXPRESSION ASSAY [J].
AKUSJARVI, G ;
SVENSSON, C ;
NYGARD, O .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (01) :549-551
[2]   Identification and characterization of a determinant (eep) on the Enterococcus faecalis chromosome that is involved in production of the peptide sex pheromone cAD1 [J].
An, FY ;
Sulavik, MC ;
Clewell, DB .
JOURNAL OF BACTERIOLOGY, 1999, 181 (19) :5915-5921
[3]   CHOLESTEROL AND THE GOLGI-APPARATUS [J].
BRETSCHER, MS ;
MUNRO, S .
SCIENCE, 1993, 261 (5126) :1280-1281
[4]   The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor [J].
Brown, MS ;
Goldstein, JL .
CELL, 1997, 89 (03) :331-340
[5]   Regulated intramembrane proteolysis: A control mechanism conserved from bacteria to humans [J].
Brown, MS ;
Ye, J ;
Rawson, RB ;
Goldstein, JL .
CELL, 2000, 100 (04) :391-398
[6]   A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood [J].
Brown, MS ;
Goldstein, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11041-11048
[7]   Transport-dependent proteolysis of SREBP: Relocation of Site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi [J].
DeBose-Boyd, RA ;
Brown, MS ;
Li, WP ;
Nohturfft, A ;
Goldstein, JL ;
Espenshade, PJ .
CELL, 1999, 99 (07) :703-712
[8]   Second-site cleavage in sterol regulatory element-binding protein occurs at transmembrane junction as determined by cysteine panning [J].
Duncan, EA ;
Davé, UP ;
Sakai, J ;
Goldstein, JL ;
Brown, MS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (28) :17801-17809
[9]   A LIPOPROTEIN SIGNAL PEPTIDE ENCODED BY THE STAPHYLOCOCCAL CONJUGATIVE PLASMID PSK41 EXHIBITS AN ACTIVITY RESEMBLING THAT OF ENTEROCOCCUS-FAECALIS PHEROMONE CAD1 [J].
FIRTH, N ;
FINK, PD ;
JOHNSON, L ;
SKURRAY, RA .
JOURNAL OF BACTERIOLOGY, 1994, 176 (18) :5871-5873
[10]   SOMATIC-CELL GENETIC-ANALYSIS OF 2 CLASSES OF CHO CELL MUTANTS EXPRESSING OPPOSITE PHENOTYPES IN STEROL-DEPENDENT REGULATION OF CHOLESTEROL-METABOLISM [J].
HASAN, MT ;
CHANG, TY .
SOMATIC CELL AND MOLECULAR GENETICS, 1994, 20 (06) :481-491