Transparent, highly conductive graphene electrodes from acetylene-assisted thermolysis of graphite oxide sheets and nanographene molecules

被引:90
作者
Liang, Yanyu [1 ,2 ]
Frisch, Johannes [3 ]
Zhi, Linjie [4 ]
Norouzi-Arasi, Hassan [1 ]
Feng, Xinliang [1 ]
Rabe, Juergen P. [3 ]
Koch, Norbert [3 ]
Muellen, Klaus [1 ]
机构
[1] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
[2] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Engn, Nanjing 210016, Peoples R China
[3] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[4] Natl Ctr Nanosci & Technol China, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
FILMS;
D O I
10.1088/0957-4484/20/43/434007
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Transparent and highly conductive graphene electrodes have been fabricated through acetylene-assisted thermolysis of graphite oxide (GO) sheets. This novel procedure uses acetylene as a supplemental carbon source to repair substantial defects within GO sheets, leading to the enhancement of graphitization of synthesized graphene electrodes. The as-prepared graphene on quartz substrates exhibits an electrical conductivity of 1425 S cm(-1) with an optical transmittance of more than 70% at a wavelength of 500 nm. Such an acetylene-assisted thermal treatment approach is also adopted to fabricate graphene electrodes from synthetic nanographene molecules, with an almost five times increase in conductivity compared to samples prepared by the common thermal reduction.
引用
收藏
页数:6
相关论文
共 29 条
[1]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[2]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[3]   Modeling of graphite oxide [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (32) :10697-10701
[4]   Temperature dependence of the Raman spectra of graphene and graphene multilayers [J].
Calizo, I. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
NANO LETTERS, 2007, 7 (09) :2645-2649
[5]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[6]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339
[7]   Evidence of graphitic AB stacking order of graphite oxides [J].
Jeong, Hae-Kyung ;
Lee, Yun Pyo ;
Lahaye, Rob J. W. E. ;
Park, Min-Ho ;
An, Kay Hyeok ;
Kim, Ick Jun ;
Yang, Cheol-Woong ;
Park, Chong Yun ;
Ruoff, Rodney S. ;
Lee, Young Hee .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (04) :1362-1366
[8]   Tunable Electrical Conductivity of Individual Graphene Oxide Sheets Reduced at "Low" Temperatures [J].
Jung, Inhwa ;
Dikin, Dmitriy A. ;
Piner, Richard D. ;
Ruoff, Rodney S. .
NANO LETTERS, 2008, 8 (12) :4283-4287
[9]  
Leach A., 2001, MOL MODELLING PRINCI
[10]   Processable aqueous dispersions of graphene nanosheets [J].
Li, Dan ;
Mueller, Marc B. ;
Gilje, Scott ;
Kaner, Richard B. ;
Wallace, Gordon G. .
NATURE NANOTECHNOLOGY, 2008, 3 (02) :101-105