Rafts: Scale-dependent, active lipid organization at the cell surface

被引:306
作者
Mayor, S
Rao, M
机构
[1] Natl Ctr Biol Sci, TIFR, Bangalore 560065, Karnataka, India
[2] Raman Res Inst, Bangalore 560080, Karnataka, India
关键词
active; cholesterol; glycosylphosphatidyl inositol-anchored proteins; membrane structure; rafts; scale dependence; signaling; sorting;
D O I
10.1111/j.1600-0854.2004.00172.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Rafts have been conceptualized as lateral heterogeneities in the organization of cholesterol and sphingolipids, endowed with sorting and signaling functions. In this review we critically examine evidence for the main tenet of the 'raft hypothesis', namely lipid-dependent segregation of specific membrane components in the plasma membrane. We suggest that conventional approaches to studying raft organization wherein membranes are treated as passive, thermally equilibrated systems are unlikely to provide an adequate framework to understand the mechanisms of raft-organization in vivo. An emerging view of raft organization is that it is spatio-temporally regulated at different scales by the cell. This argues that rafts must be defined by simultaneous observation of components involved in particular functions. Recent evidence from the study of glycosylphosphatidyl inositol-anchored proteins, a common raft-marker, supports this picture in which larger scale, more stable rafts are induced from preexisting small-scale lipid-dependent structures actively maintained by cellular processes.
引用
收藏
页码:231 / 240
页数:10
相关论文
共 84 条
[11]   SORTING OF GPI-ANCHORED PROTEINS TO GLYCOLIPID-ENRICHED MEMBRANE SUBDOMAINS DURING TRANSPORT TO THE APICAL CELL-SURFACE [J].
BROWN, DA ;
ROSE, JK .
CELL, 1992, 68 (03) :533-544
[12]   GPI anchoring leads to sphingolipid-dependent retention of endocytosed proteins in the recycling endosomal compartment [J].
Chatterjee, S ;
Smith, ER ;
Hanada, K ;
Stevens, VL ;
Mayor, S .
EMBO JOURNAL, 2001, 20 (07) :1583-1592
[13]   Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: Boundaries and composition of lipid rafts [J].
de Almeida, RFM ;
Fedorov, A ;
Prieto, M .
BIOPHYSICAL JOURNAL, 2003, 85 (04) :2406-2416
[14]   Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers [J].
Dietrich, C ;
Volovyk, ZN ;
Levi, M ;
Thompson, NL ;
Jacobson, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (19) :10642-10647
[15]   Lipid rafts reconstituted in model membranes [J].
Dietrich, C ;
Bagatolli, LA ;
Volovyk, ZN ;
Thompson, NL ;
Levi, M ;
Jacobson, K ;
Gratton, E .
BIOPHYSICAL JOURNAL, 2001, 80 (03) :1417-1428
[16]   Timeline - Lipids on the frontier: a century of cell-membrane bilayers [J].
Edidin, M .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2003, 4 (05) :414-418
[17]  
EDIDIN M, 2000, ANNU REV BIOPH BIOM, V16, P16
[18]   Solubility of amphiphiles in membranes: influence of phase properties and amphiphile head group [J].
Estronca, LMBB ;
Moreno, MJ ;
Abreu, MSC ;
Melo, E ;
Vaz, WLC .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2002, 296 (03) :596-603
[19]   Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: Nanoscopic domain formation driven by cholesterol [J].
Feigenson, GW ;
Buboltz, JT .
BIOPHYSICAL JOURNAL, 2001, 80 (06) :2775-2788
[20]   Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors [J].
Foster, LJ ;
de Hoog, CL ;
Mann, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (10) :5813-5818