Nanoengineered Carbon Scaffolds for Hydrogen Storage

被引:71
作者
Leonard, Ashley D. [1 ,2 ,3 ,4 ]
Hudson, Jared L. [1 ,2 ,3 ,4 ]
Fan, Hua [1 ,2 ,3 ,4 ]
Booker, Richard [1 ,2 ,3 ,4 ]
Simpson, Lin J. [5 ]
O'Neill, Kevin J. [5 ]
Parilla, Philip A. [5 ]
Heben, Michael J. [5 ]
Pasquali, Matteo [1 ,2 ,3 ,4 ]
Kittrell, Carter [1 ,2 ,3 ,4 ]
Tour, James M. [1 ,2 ,3 ,4 ]
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
[2] Rice Univ, Dept Mech Engn, Houston, TX 77005 USA
[3] Rice Univ, Dept Mat Sci Chem & Biomol Engn, Houston, TX 77005 USA
[4] Rice Univ, Nanoscale Sci & Technol, Houston, TX 77005 USA
[5] Natl Renewable Energy Lab, Golden, CO 80401 USA
关键词
METAL-ORGANIC FRAMEWORKS; MOLECULAR-HYDROGEN; NANOTUBE FIBERS; ADSORPTION; FUNCTIONALIZATION; NANOSTRUCTURES; CHEMISTRY; GRAPHITE; SWNTS;
D O I
10.1021/ja806633p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-walled carbon nanotube (SWCNT) fibers were engineered to become a scaffold for the storage of hydrogen. Carbon nanotube fibers were swollen in oleum (fuming sulfuric acid), and organic spacer groups were covalently linked between the nanotubes using diazonium functionalization chemistry to provide 3-dimensional (3-D) frameworks for the adsorption of hydrogen molecules. These 3-D nanoengineered fibers physisorb twice as much hydrogen per unit surface area as do typical macroporous carbon materials. These fiber-based systems can have high density, and combined with the outstanding thermal conductivity of carbon nanotubes, this points a way toward solving the volumetric and heat-transfer constraints that limit some other hydrogen-storage supports.
引用
收藏
页码:723 / 728
页数:6
相关论文
共 29 条
[1]   Covalent chemistry of single-wall carbon nanotubes [J].
Bahr, JL ;
Tour, JM .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (07) :1952-1958
[2]   Modeling of adsorption storage of hydrogen on activated carbons [J].
Bénard, P ;
Chahine, R .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2001, 26 (08) :849-855
[3]   Size effects on the hydrogen storage properties of nanostructured metal hydrides:: A review [J].
Berube, Vincent ;
Radtke, Gregg ;
Dresselhaus, Mildred ;
Chen, Gang .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2007, 31 (6-7) :637-663
[4]   Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process) [J].
Chiang, IW ;
Brinson, BE ;
Huang, AY ;
Willis, PA ;
Bronikowski, MJ ;
Margrave, JL ;
Smalley, RE ;
Hauge, RH .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (35) :8297-8301
[5]   Phase Behavior and rheology of SWNTs in superacids [J].
Davis, VA ;
Ericson, LM ;
Parra-Vasquez, ANG ;
Fan, H ;
Wang, YH ;
Prieto, V ;
Longoria, JA ;
Ramesh, S ;
Saini, RK ;
Kittrell, C ;
Billups, WE ;
Adams, WW ;
Hauge, RH ;
Smalley, RE ;
Pasquali, M .
MACROMOLECULES, 2004, 37 (01) :154-160
[6]  
Dyke C., 2006, CARBON NANOTUBES PRO, P275
[7]   Covalent functionalization of single-walled carbon nanotubes for materials applications [J].
Dyke, CA ;
Tour, JM .
JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (51) :11151-11159
[8]   Macroscopic, neat, single-walled carbon nanotube fibers [J].
Ericson, LM ;
Fan, H ;
Peng, HQ ;
Davis, VA ;
Zhou, W ;
Sulpizio, J ;
Wang, YH ;
Booker, R ;
Vavro, J ;
Guthy, C ;
Parra-Vasquez, ANG ;
Kim, MJ ;
Ramesh, S ;
Saini, RK ;
Kittrell, C ;
Lavin, G ;
Schmidt, H ;
Adams, WW ;
Billups, WE ;
Pasquali, M ;
Hwang, WF ;
Hauge, RH ;
Fischer, JE ;
Smalley, RE .
SCIENCE, 2004, 305 (5689) :1447-1450
[9]   The age of energy gases [J].
Hefner, RA .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (01) :1-9
[10]   Water-soluble, exfoliated, nonroping single-wall carbon nanotubes [J].
Hudson, JL ;
Casavant, MJ ;
Tour, JM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (36) :11158-11159