Insertion site preference of Mu, Tn5, and Tn7 transposons

被引:108
作者
Green, Brian [1 ]
Bouchier, Christiane [2 ]
Fairhead, Cecile [3 ]
Craig, Nancy L. [4 ]
Cormack, Brendan P. [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Mol Biol & Genet, Baltimore, MD 21205 USA
[2] Inst Pasteur, Dept Genomes & Genet, F-75015 Paris, France
[3] Univ Paris 11, Inst Genet & Microbiol, CNRS, UMR8621, F-91405 Orsay, France
[4] Johns Hopkins Univ, Sch Med, Dept Mol Biol & Genet, Howard Hughes Med Inst, Baltimore, MD 21205 USA
来源
MOBILE DNA | 2012年 / 3卷
关键词
Tn7; Mu; Tn5; Mutagenesis; Insertion site; DNA transposon; Mobile element; SACCHAROMYCES-CEREVISIAE; BACTERIOPHAGE MU; CANDIDA-GLABRATA; CDNA CLONES; IN-VITRO; GENOME; MUTAGENESIS; SEQUENCES;
D O I
10.1186/1759-8753-3-3
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: Transposons, segments of DNA that can mobilize to other locations in a genome, are often used for insertion mutagenesis or to generate priming sites for sequencing of large DNA molecules. For both of these uses, a transposon with minimal insertion bias is desired to allow complete coverage with minimal oversampling. Findings: Three transposons, Mu, Tn5, and Tn7, were used to generate insertions in the same set of fosmids containing Candida glabrata genomic DNA. Tn7 demonstrates markedly less insertion bias than either Mu or Tn5, with both Mu and Tn5 biased toward sequences containing guanosine (G) and cytidine (C). This preference of Mu and Tn5 yields less uniform spacing of insertions than for Tn7, in the adenosine (A) and thymidine (T) rich genome of C. glabrata (39% GC). Conclusions: In light of its more uniform distribution of insertions, Tn7 should be considered for applications in which insertion bias is deleterious.
引用
收藏
页数:6
相关论文
共 16 条
[1]   A simple in vitro Tn7-based transposition system with low target site selectivity for genome and gene analysis [J].
Biery, MC ;
Stewart, FJ ;
Stellwagen, AE ;
Raleigh, EA ;
Craig, NL .
NUCLEIC ACIDS RESEARCH, 2000, 28 (05) :1067-1077
[2]   An efficient strategy for large-scale high-throughput transposon-mediated sequencing of cDNA clones [J].
Butterfield, YSN ;
Marra, MA ;
Asano, JK ;
Chan, SY ;
Guin, R ;
Krzywinski, MI ;
Lee, SS ;
MacDonald, KWK ;
Mathewson, CA ;
Olson, TE ;
Pandoh, PK ;
Prabhu, AL ;
Schnerch, A ;
Skalska, U ;
Smailus, DE ;
Stott, JM ;
Tsai, MI ;
Yang, GS ;
Zuyderduyn, SD ;
Schein, JE ;
Jones, SJM .
NUCLEIC ACIDS RESEARCH, 2002, 30 (11) :2460-2468
[3]   Tn7-based genome-wide random insertional mutagenesis of Candida glabrata [J].
Castaño, I ;
Kaur, R ;
Pan, SJ ;
Cregg, R ;
De Las Peñas, A ;
Guo, NN ;
Biery, MC ;
Craig, NL ;
Cormack, BP .
GENOME RESEARCH, 2003, 13 (05) :905-915
[4]  
Cormack BP, 1999, GENETICS, V151, P979
[5]  
Craig NL, 2002, MOBILE DNA
[6]   Genome evolution in yeasts [J].
Dujon, B ;
Sherman, D ;
Fischer, G ;
Durrens, P ;
Casaregola, S ;
Lafontaine, I ;
de Montigny, J ;
Marck, C ;
Neuvéglise, C ;
Talla, E ;
Goffard, N ;
Frangeul, L ;
Aigle, M ;
Anthouard, V ;
Babour, A ;
Barbe, V ;
Barnay, S ;
Blanchin, S ;
Beckerich, JM ;
Beyne, E ;
Bleykasten, C ;
Boisramé, A ;
Boyer, J ;
Cattolico, L ;
Confanioleri, F ;
de Daruvar, A ;
Despons, L ;
Fabre, E ;
Fairhead, C ;
Ferry-Dumazet, H ;
Groppi, A ;
Hantraye, F ;
Hennequin, C ;
Jauniaux, N ;
Joyet, P ;
Kachouri, R ;
Kerrest, A ;
Koszul, R ;
Lemaire, M ;
Lesur, I ;
Ma, L ;
Muller, H ;
Nicaud, JM ;
Nikolski, M ;
Oztas, S ;
Ozier-Kalogeropoulos, O ;
Pellenz, S ;
Potier, S ;
Richard, GF ;
Straub, ML .
NATURE, 2004, 430 (6995) :35-44
[7]   Analysis of human Pex19p's domain structure by pentapeptide scanning mutagenesis [J].
Fransen, M ;
Vastiau, I ;
Brees, C ;
Brys, V ;
Mannaerts, GP ;
Van Veldhoven, PP .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 346 (05) :1275-1286
[8]   Tn5/IS50 target recognition [J].
Goryshin, IY ;
Miller, JA ;
Kil, YV ;
Lanzov, VA ;
Reznikoff, WS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (18) :10716-10721
[9]   DNA transposition of bacteriophage Mu -: A quantitative analysis of target site selection in vitro [J].
Haapa-Paananen, S ;
Rita, H ;
Savilahti, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (04) :2843-2851
[10]   Efficient computation of absent words in genomic sequences [J].
Herold, Julia ;
Kurtz, Stefan ;
Giegerich, Robert .
BMC BIOINFORMATICS, 2008, 9 (1)